
ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXXXX.

Free/Libre Open Source Software Development:
What We Know and What We Do Not Know
KEVIN CROWSTON
Syracuse University
KANGNING WEI
Syracuse University
JAMES HOWISON
Carnegie Mellon University
AND
ANDREA WIGGINS
Syracuse University
__

We review the empirical research on Free/Libre and Open Source Software (FLOSS) development and assess
the state of the literature. We develop a framework for organizing the literature based on the input-mediator-
output-input (IMOI) model from the small groups literature. We present a quantitative summary of articles
selected for the review and then discuss findings of this literature categorized into issues pertaining to inputs
(e.g., member characteristics, technology use and project characteristics), processes (software development
practices, social processes and firm involvement practices), emergent states (e.g., social states and task related
states) and outputs (e.g. team performance, FLOSS implementation and project evolution). Based on this review,
we suggest topics for future research, as well as identify methodological and theoretical issues for future inquiry
in this area, including issues relating to sampling and the need for more longitudinal studies.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management – Life cycle; D.2.9 [Software
Engineering]: Management – Programming teams; J.4 [Computer Applications]: Social and Behavioral
Sciences - Sociology; K.6.3 [Computing Milieux]: Management of Computing and Information Systems –
Software management

General Terms: Design, Human Factors, Management, Measurement, Performance

Additional Key Words and Phrases: Free/Libre open source software, development, computer-mediated
communication, distributed work

ACM File Format:

CROWSTON, K., WEI, K., HOWISON, J., AND WIGGINS, A. 2010. Free/libre open source software development:
what we know and what we do not know. ACM Comput. Surv. XX, XX, Article XX (Month Year), XX pages.
DOI = XXXXXXXXXXXXXXXXXX
__

1. INTRODUCTION
In this paper, we review the published empirical research literature on development of
Free/Libre and Open Source Software (FLOSS) development. FLOSS is an umbrella
__

Authors’ addresses: K. Crowston, K. Wei, and A. Wiggins, School of Information Studies, Syracuse University,
Syracuse, NY 13244. E-mai J. Howison, Institute for Software Research, School of Computer Science,
Carnegie Mellon University, Pittsburg, PA 15213. E-mail: jhowison@cs.cmu.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Permission may be requested from the Publications Dept., ACM, Inc., 2 Penn Plaza,
New York, NY 11201-0701, USA, fax: +1 (212) 869-0481, permission@acm.org

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
2

term that covers a diversity of kinds of software and approaches to development, so we
start this review by clarifying our focus. In general, the term free software1 or open source
software refers to software released under a license that permits the inspection, use,
modification and redistribution of the software’s source code2. The distinction between
free software and open source software is sometimes controversial and there are
important differences between these two development communities [Kelty 2008].
However, our focus in this paper is on research on their development processes, which
are acknowledged by participants to be largely similar (Free Software Foundation,
http://www.fsf.org), hence our use of this umbrella term.

While FLOSS-licensed software may be developed in the same way as proprietary
software (e.g., as in the case of MySQL), much of it is developed by teams of
organizationally- and geographically-distributed developers, in what has been described
as community-based development [Lee and Cole 2003], which is the focus of the
research examined in this review. In some projects, a focal organization may take the lead
in coordinating the efforts of a broader community of developers [Fitzgerald 2006], but
many projects exist outside of any formal organizational structure. Forges such as
SourceForge and GForge are often used to organize FLOSS development efforts. Though
recent years have seen an increase in the participation of firms in FLOSS and so in
contribution from employees paid to work on FLOSS projects [Lakhani and Wolf 2005],
even these contributions are often made available to the wider community [Henkel 2006].
As a result, FLOSS can be characterized as a privately-produced public good [O'Mahony
2003]. These private/public development practices are the focus of this review.

Over the past ten years, FLOSS has moved from an academic curiosity to a
mainstream focus for research. There are now thousands of active FLOSS projects,
spanning a wide range of applications. Due to their sizes, success and influence, the
Linux operating system and the Apache Web Server and related projects are the most
well known, but hundreds of others are in widespread use, including projects on Internet
infrastructure (e.g., sendmail, bind), user applications (e.g., Mozilla Firefox, OpenOffice),
programming language interpreters and compilers (e.g., Perl, Python, gcc), programming
environments (e.g., Eclipse) and even enterprise systems (e.g., eGroupware, openCRX).

With this growth has come a concurrent increase in the volume of research examining
the phenomenon. A review of this literature is important and timely for several reasons.
First and foremost, FLOSS has become an important phenomenon to understand for its
own sake. FLOSS is now a major social movement involving an estimated 800,000
programmers around the world [Vass 2007] as well as a commercial phenomenon
involving a myriad of software development firms, large and small, long-established and
startup. On the user side, millions have grown to depend on FLOSS systems such as
Linux, not to mention the Internet, itself heavily dependent on FLOSS tools. A recent
report estimates that 87% of US businesses use FLOSS [Walli, et al. 2005]. Ghosh [2006]
estimated the cost of recreating available FLOSS code at €12B, and noted “This code
base has been doubling every 18-24 months over the past eight years, and this growth is
projected to continue for several more years”. As a result, FLOSS has become an integral
part of the infrastructure of modern society, making it critical to understand more fully
how it is developed.

1 Sometimes referred to as “libre software” to avoid the potential confusion between the intended

meaning of free meaning freedom and free meaning at no cost.
2 See http://www.gnu.org/philosophy/free-sw.html for a definition and discussion of free software

and http://www.opensource.org/docs/osd for a definition and discussion of open source software.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
3

As well, FLOSS represents a different approach to innovation in the software industry.
The research literature on software development and on distributed work emphasizes the
difficulties of distributed software development, but successful community-based FLOSS
development presents an intriguing counter-example. Characterized by a globally
distributed developer force, a rapid, reliable software development process and a
diversity of tools to support distributed collaborative development, effective FLOSS
development teams somehow profit from the advantages and overcome the challenges of
distributed work [Alho and Sulonen 1998]. FLOSS is also an increasingly important
venue for students learning about software development, as it provides a unique
environment in which learners can be quickly exposed to real-world innovation, while
being empowered and encouraged to participate. For example, Google Summer of Code
program offers student developers stipends to write code for FLOSS projects
(http://code.google.com/soc/).

In addition to its intrinsic merits, FLOSS development has attracted great interest
because it provides an accessible example of other phenomena of growing interest. For
example, many researchers have turned to community-based FLOSS projects as
examples of virtual work, as they are dynamic, self-organizing distributed teams
comprising professionals, users and others working together in a loosely-coupled fashion
[von Hippel 2001, von Hippel and von Krogh 2003]. Teams are almost purely virtual in
that community-based developers contribute from around the world, meet face-to-face
infrequently if at all and coordinate their activities primarily by means of computer-
mediated communications (CMC) [Raymond 1998, Wayner 2000]. The teams have a
high isolation index [O'Leary and Cummings 2007] in that many team members work on
their own and in most cases for different organizations (or no organization at all). For
most community-based FLOSS teams, distributed work is not an alternative to face-to-
face: it is the only feasible mode of interaction. As a result, these teams depend on
processes that span traditional boundaries of place and ownership. While these features
place FLOSS teams toward the end of the continuum of virtual work arrangements
[Watson-Manheim, et al. 2002], the emphasis on distributed work makes them useful as a
research setting for isolating the implications of this organizational innovation.
Traditional organizations have taken note of these successes and have sought ways of
leveraging FLOSS methods for their own distributed teams, difficult without first
understanding what these methods are.

Another important feature of the community-based FLOSS development process is
that many developers contribute to projects as volunteers, without remuneration; others
are paid by their employers, but still not directly by the project. As a result, recruiting and
retaining new contributors is a critical success factor for a FLOSS project. Furthermore,
the threat of “forking” (starting a parallel project from the same code base), while
uncommon and discouraged, limits the ability of project leaders to discipline members.
These features make FLOSS teams extreme examples of self-organizing distributed
teams, but they are not inconsistent with the conditions faced by many organizations
when recruiting and motivating professionals or developing distributed teams. As Peter
Drucker put it, “increasingly employees are going to be volunteers, because a knowledge
worker has mobility and can go pretty much every place, and knows it… Businesses will
have to learn to treat knowledge workers as volunteers” [Collins and Drucker 1999]. As a
result, research on FLOSS development offers lessons for many organizations.

However, as Scacchi [2002] noted, “little is known about how people in these
communities coordinate software development across different settings, or about what

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
4

software processes, work practices, and organizational contexts are necessary to their
success”. While a great number of studies have been conducted on FLOSS, our review
shows there have been few efforts made to integrate these findings into a coherent body
of knowledge based on a systematic review of the literature. The few surveys that have
been done [e.g. Rossi 2006, Scacchi 2007, von Krogh and von Hippel 2006] synthesize
various major issues investigated in FLOSS research, based on a small set of studies, but
without explaining how their review processes informed these issues or their sample
strategies. Indeed, it is clear that the term FLOSS includes groups with a wide diversity
of practices and varying degrees of effectiveness, but the dimensions of this space are
still unclear. A key goal of our review is to synthesize the empirical literature to date in
order to clarify what we know and do not know about community-based FLOSS
development and to suggest promising directions for further work.

This paper is organized as follows. The next section provides a brief overview of the
research methodology applied in conducting this review. It is followed by two reviews of
empirical studies that examine FLOSS development. Building on this review, we then
identify trends as well as gaps in current research and provide suggestions for future
research. The paper concludes with a summary of key points drawn from our review.

2. METHODOLOGY
This section describes the methodology we followed to identify and classify relevant
work as a basis for a systematic review. Our goal in this paper is to summarize the
findings of the published research on FLOSS, rather than presenting our own
perspectives on the subject. Our literature review therefore required: 1) a literature search
strategy; 2) the development of criteria for the types of studies to be included in our
analysis; and 3) a coding scheme to analyze the selected studies. We performed two types
of analysis, requiring two approaches to coding. The methods adopted for these tasks are
described below.

2.1 Literature search strategy and criteria for inclusion
A challenge we faced in preparing this review is that the literature on FLOSS is
expanding all the time, requiring a strategy for dealing with this growth while still
producing a useful review article. To address this challenge we collected and analyzed
papers for the review in two waves, the first in early 2006 and the second in early 2009.

At the time we began this review, FLOSS research was relatively new and often not
published in journals, so we initially attempted to collect as many articles on FLOSS as
possible before refining the collection. The first wave of papers was collected using three
methods to search for appropriate literature, with a goal of identifying essentially all
available papers on FLOSS to that point. First, we collected all papers from the
opensource.mit.edu working paper repository3 (commonly used by researchers in the
field to distribute papers), from journal special issues on FLOSS, and from FLOSS tracks
in conferences such as the International Conference on Open Source Software (OSS)
(organized by International Federation for Information Processing (IFIP) Working Group
2.13) and International Conference on Software Engineering (ICSE) workshops, as well
as conferences in related fields such as the Academy of Management and Association of
Information Systems. Second, we conducted a search in document databases such as
ABI/Inform and Web of Science using “open source software” as the keyword (we had

3 Papers at opensource.mit.edu repository have been migrated to FLOSShub (http://flosshub.org),
which is a one-stop source for free/libre and open source software research resources.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
5

noted that most papers on FLOSS development used that term, and at the time even
papers addressing free software specifically included the term as a point of comparison).
Finally, we looked through the reference lists of key articles to ensure that we had not
overlooked other articles. The search process resulted in 586 papers in total. To ensure
the quality of the review results, we retained only papers published in refereed journals
and conference proceedings. Thus, working papers, unpublished dissertations, magazine
articles and opinion articles were excluded. Given our goal of reviewing FLOSS research
to clarify what we know and what we do not know about FLOSS development, we
limited our review to 135 published empirical studies where FLOSS development was the
main theme.

The dramatic increase in research after 2006 and increased acceptance of FLOSS as a
research topic made it possible to focus our search the later stage of collection and
analysis. The quantitative analysis of the first wave of papers indicates that there were no
significant differences in the constructs studied between articles published in journals and
conferences. Thus, the second wave of papers was collected only from journal articles
published between 2006 and early 2009, yielding a further 49 empirical papers. The
resulting 184 papers are from 52 different journals and 40 different conferences
(Appendix 1 lists the journals and conferences4). The diversity of audiences for research
on FLOSS development highlights the need for a systematic survey that pulls together
work from these diverse sources, which might otherwise go unnoticed by researchers
working in a single discipline.

One concern about this sampling approach is that in some research areas, particularly
in computer science, research is presented primarily at conferences. Therefore, our
coverage of the recent research (2006-9) may include the kinds of work done in
disciplines where the major focus is on journal publication but overlook the kinds of
work done in disciplines where only conference proceedings are more typical. However,
we do note that we have a representation of computer science research in both phases of
the study, including a number of computer science journal papers. On the other hand,
including both conference and journal papers poses a possible threat of double counting
papers, as in some disciplines (e.g., management), it is common for researchers to publish
findings first in a conference paper, then as a revised version in a journal. Identifying
when a paper should be counted as a revision of another paper can be difficult. Such
duplication could again result in overrepresentation of certain kinds of research in the
sample. We considered these possible sampling biases in designing the analysis approach,
as we will describe.

We carried out two types of analysis that are presented in this paper: a quantitative
review and a qualitative review. The qualitative review, which is the main contribution of
this paper, includes articles from both waves of collection, while the quantitative review
includes only articles from the first wave for which the sample is complete. Papers from
the second wave were not included in the quantitative analysis because of concerns that
the selective collection of these papers had resulted in a biased sample as noted above,
making quantitative summaries of this sample suspect. The approach taken for these
analyses is described in the following subsections.

4 Appendix 1 is available at
http://floss.syr.edu/system/files/Appendix%201%20Journal%20and%20Conference%20Names.pdf

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
6

2.2 Quantitative review methodology
The goal of the quantitative review was to provide an overview of the nature of research
being published on FLOSS development. For this review, each article from the first wave
was coded on several dimensions: publication year, publication venue type (conference or
journal), level of analysis (e.g., group or individual), research methods (e.g., survey, case
study), data collection methods, number and names of projects studied, reference
disciplines that support the research, theories applied (if any) and the main constructs it
examined (please refer to Appendix 2 for a presentation of the coding scheme5). Specific
categories for each dimension were developed by a group of coders until basic agreement
was achieved on a sample group of papers. The full collection was then split between two
coders working through an online system that showed their coding work, enabling coders
to use codes created by other coders. The two coders met from time to time to review
their use of codes. This information provides a quantitative assessment of the state of
FLOSS research as of early 2006 and suggests gaps that future research might address.

2.3 Qualitative review methodology
The goal of the qualitative review was to identify constructs studied in the literature and
to summarize research findings. A crucial task for a review paper is to provide a
framework capable of organizing the existing literature and assisting future researchers in
positioning their work in reference to that existing literature. We began our search for
such a framework with an inductive card sorting exercise. Four coders examined a
sample of the literature from the first wave and inductively recorded codes for the
concepts studied in the paper. These codes were used as the starting point for the
systematic coding of constructs noted above. To develop the overall model, we
transferred the codes onto sticky notes and sorted them as a group on a white-board. We
then used the results of this sorting process to guide a search for relevant frameworks in
the literature, leading to the selection of the model described below, which in turn was
used to structure the review of the papers from both waves of paper collection. Having
identified the constructs studied in the literature and organized them in a framework, we
then returned to the papers to identify the findings of each study, collecting together those
that addressed similar constructs. These findings are presented below.

3. AN OVERVIEW OF THE FLOSS RESEARCH LITERATURE
In this subsection, we present the quantitative analysis of the research publications on
FLOSS development. This analysis is based on the exhaustive survey of papers collected
in the first wave, that is those published up through early 2006. A little more than half of
the sample (55%) were papers from conferences, with journal papers make up the
remaining 45%. A sharp increase in the number of annual publication from 1999 through
2005 (Figure 1) demonstrates the increasing interest in the topic. This increase is
reflected in the selective review of more recent publications. In particular, the increased
acceptance of FLOSS research in journals allowed us to consider only journal
publications in the second wave of our study, as noted above.

5 Appendix 2 is available at
http://floss.syr.edu/system/files/Appendix%202%20Coding%20Scheme.pdf

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
7

Fig. 1: Annual counts of empirical research publications

3.1 Level of analysis
FLOSS can be studied at different levels of analysis. We distinguished among studies at
the artifact (which captures papers whose focus is on source code of FLOSS,
technologies that support FLOSS development such as SourceForge and programming or
algorithms), individual, group, organization and societal levels. Approximately 8% of
papers included multiple levels of analysis, most often integrating the group and
organization levels. The literature demonstrates a strong preference for research at the
group or project level of analysis, which makes up 59% of the studies in the sample, with
an additional 18% at the individual level, 19% at the organizational level, and just 4% at
the level of society. About 7% of the studies focused on artifacts, with little discussion of
behavioral aspects of FLOSS development.

3.2 Research methods
Although a variety of research methods were observed, the case study was the most
common, making up 43% of all papers in the sample (n=58). Case studies were typically
performed at the group level of analysis (n=32, 24% of total), and based on archival data
in more than half of these instances (n=17, 12.5% of total). It is notable, however, that all
of the papers in the sample for which the coders found the data collection methods
unclear were case studies. In addition, some case studies did not specify the number of
projects in their sample, which implies that the details of data collection may frequently
go unstated in case study research, while all other research methods had clearly
identifiable data collection methods.

Surveys were the next most common choice of research method, appearing in about
25% of our sample. For these papers, it may be surprising to note that studies conducted
at the group level were also based on archival data in about two-thirds of the papers. This
speaks to the overall trends for data types used in FLOSS studies; regardless of the data
collection methods or source, 52% of studies in the sample were based on archival data
retrieved from development repositories. Only about 10% of papers used interview data,
and likewise, only about 10% used data collected through observation. Multi-method
studies, while infrequent, were most likely to incorporate interviews with case studies,
surveys and field studies.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
8

3.3 Sample Size and Projects Studied
The distribution of sample sizes of projects studied in these papers was highly skewed
toward single projects (42%), followed by studies of fewer than ten projects (18%),
studies using repository data (16%) that may include anywhere from hundreds to
thousands of projects, and studies of 10-100 projects (6%). Considering research methods
and levels of analysis, the dominant form of FLOSS research overall was the study of a
single project at the group level: 35 such papers comprised approximately 26% of our
sample. This choice is closely related to the choices of research and data collection
methods, as shown seen in Table I. To highlight the distribution of studies, the darkness
of the cell and size of the font are proportional to the fraction of studies represented.

Table I. Research methods and level of analysis
Research
Methods Levels of Analysis

 Total Society Organization Group/
Project Individual Artifact

Multi
Level

Total 4% 19% 59% 18% 7% 8%

Case Study 43% 2% 8% 24% 9% 4% 4%

Survey 25% 1% 4% 13% 7% 1% 1%

Objects1 10% 1% 1% 7% 1%

Field Study 9% 1% 1% 6% 1%

Secondary data2 4% 1% 4% 1%

Instrument
Development3 4% 1% 2% 1% 1%

Multi Method 4% 1% 1% 2% 1%

Interview4 4% 1% 2% 2%

Simulation 2% 1% 1%

Experiment 1% 1%

The following definitions were adapted from Alavi and Carlson [1992]

1. As a research method, objects identify articles that describe a system, product or project.

2. Data used in the articles are collected by sources other than the researchers.
3. Instrument development identifies papers that describe the development of instruments and/or

measurements of FLOSS activities.
4. As a research method, interview means the research is conducted by interviewing on an individual

basis, which is different from using interviews as a data collection technique.

With respect to the projects studied in the FLOSS literature, 42% of the papers
sampled did not name the projects they studied, or did not study a specific project, but
rather some other aspects of FLOSS, such as implementation. None of the studies using
repository data named the projects that were studied, presumably due to the scale of the
research (these studies can include hundreds or thousands of projects). The remaining
58% of the sample provided some interesting insights into the types of open source
projects covered in the literature. The distribution of projects named in different studies
showed a classic long-tail distribution, seen in Figure 2. Linux was clearly the most
commonly studied FLOSS project, appearing in 30 studies, followed by Apache (usually
meaning the httpd server). Two-thirds of these papers studied only Linux and the

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
9

remaining third of the papers included additional projects besides Linux. However, while
Linux and Apache have been most studied overall, the frequency of papers including
these two projects peaked in 2003 and dropped sharply thereafter. At the same time, the
number of studies with no projects named, often those examining a large sample of
projects or using repository data (these factors correlate at r=0.98), have been increasing
over time. This suggests that as data on a wider variety of projects became more easily
available, the variety of projects studied also rose.

As indicated by the distribution of projects studied, shown in Figure 2, only 18 of the
51 projects (35%) named as subjects that appeared in our sample were included in more
than one study. This trend brings into question how well the projects currently studied in
FLOSS research represent the entire population; it is reasonable to expect that there are
significant differences between Linux, for example, and such projects as VIM, GIMP,
and XML included in other studies.

Fig. 2. Distribution of Studies of FLOSS Projects

Figure 3 shows the tradeoff in FLOSS research between the sample sizes of projects
studied and the intensity of the research approach. The size of the circle represents the
relative number of the studies in that area. The figure shows the two types of studies that
dominate current FLOSS research, as noted above: one or a small number of projects
studied using the case study method or survey covering a few variables to investigate
larger sample sizes. These two types of studies represent two extremes of the tradeoff
between the depth and breadth of a research study, anchoring the ends of a frontier of
feasible research designs indicated by the red arc in Figure 3.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
10

Fig. 3. Distribution of Research by Research Methods and Number of Projects Studied

3.4 Reference Disciplines and Theories
We examined the reference disciplines and theories identified in the research papers to
shed light on the intellectual underpinnings of these studies. We identified the reference
disciplines on which an article was based by examining the theories or papers the authors
used to formulate their models or hypotheses, and classified a paper as belonging to a
particular reference discipline when it predominantly cited other papers from that
discipline as the source [Vessey, et al. 2002]. Approximately 20% of the papers did not
explicitly refer to any reference disciplines and about 64% referred to only a single
reference discipline. The remaining 16% of the papers incorporated two to four reference
disciplines, with business and management influences presented in 80% of these
multidisciplinary papers. Business and management was also the most common reference
discipline overall, with one-third of the total mentions. Computer science and computer
engineering together comprised almost a third of the references as well, with information
science and sociology being the next most common reference disciplines mentioned in
the literature. While it may seem surprising that computer science and engineering are not
a larger fraction of the studies found, the diversity of fields reflects our focus on
empirical studies of development practices. In addition, 62% of papers that drew upon
multiple reference disciplines employed theory in their studies, in contrast to only 27% of
papers that referenced a single discipline, suggesting that the development and
application of theory in this research area is often characterized by leveraging the
intellectual resources of multiple disciplines.

We also examined how studies used existing theories. We classified a paper as
“theory-included” when it explicitly cited existing theories/principles to support its
models or hypotheses. Case studies and surveys made up the bulk of the papers in our
sample, and were also the most likely to contain references to theory, as seen in Figure 4:
35% of case studies mentioned theoretical content, as did about 44% of surveys. While
only about 32% of the overall sample contained references to theory, the more technical
research approaches of instrument development and studies of objects or artifacts
(usually code) had no instances of theory usage. This demonstrates one of the challenges
in describing an interdisciplinary body of research literature, as not all studies’
contributions can be adequately judged based on the traditional classifications that we
have applied here.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
11

Fig. 4. Inclusion of References to Theory by Research Methods

4. FINDINGS OF THE FLOSS RESEARCH LITERATURE
In this section, we present the main contribution of our review, namely an overview of
the findings of the research literature, drawn from the published papers. In the first
subsection, we provide a description of our organizing framework, which draws on an
Inputs-Mediators-Outputs-Inputs (IMOI) model. This model is used to organize the
constructs studied in the literature. A detailed review of the findings of the literature
organized by these constructs follows in subsections 4.2–4.5, which forms the bulk of this
paper.

4.1 An Organizing Framework for the Review
As noted above, we developed a framework for organizing the research papers on FLOSS
development based on the constructs studied. We chose to organize these constructs
according to the inputs-mediators-outputs-inputs (IMOI) model (Figure 5) [Ilgen, et al.
2005], which draws together decades of work in the ‘small group’ literature [Hackman
and Morris 1978, Marks, et al. 2001, McGrath 1984, McGrath 1991, McGrath 1997].
This model most closely matched the inductive model and provided additional structure
for the framework presented in this paper. We chose the IMOI model over earlier Input-
Process-Output models [e.g., Hackman and Morris 1978] because: 1) it distinguishes
emergent states from processes, which describe cognitive, motivational and affective
states of a team, as opposed to the interdependent team activities; and 2) it provides
feedback loops between outputs and inputs, treating outputs also as inputs to future team
processes and emergent states [Ilgen, et al. 2005]. The suitability of the model is
unsurprising since most FLOSS development does occur in small teams and the majority
of the studies conducted research at the project level of analysis. Where necessary, we
adapted the model to incorporate detailed constructs directly tied to the software
engineering context of FLOSS work.

Fig. 5. Inputs-Mediators-Outputs-Inputs Model (adapted from Ilgen et al. 2005)

Inputs Mediator
s

Outputs

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
12

Figure 6 shows the resulting framework, with the major concepts that we identified in
the FLOSS research papers in each of the categories of the IMOI model. Inputs represent
starting conditions of a team, such as its member characteristics and project/task
characteristics. Mediators represent variables that have mediating influences on the
impact of inputs on outputs. Mediators can be further divided into two categories:
processes and emergent states. Processes represent dynamic interactions among team
members as they work on their projects, leading to the outputs. Emergent states are
constructs that “characterize properties of the team that are typically dynamic in nature
and vary as a function of team context, inputs, processes and outcomes” [Marks, et al.
2001, p.357]. Outputs represent task and non-task consequences of a team functioning
[Martins, et al. 2004].

Fig. 6. Constructs Studied in the Reviewed FLOSS Research Papers and Their Relations

A variety of constructs were observed in the literature, with one to seven distinct
constructs identified in each paper. The most commonly studied class of construct was
project characteristics, which made up 21% of all instances of constructs studied in the
first wave, indicating the descriptive nature of much of the FLOSS literature in our
sample. Project characteristics were overwhelmingly studied through archival data (15%
of total), while constructs such as implementation and context do not rely as heavily on a
single data type. Social processes (16%) and success (12%) were the next most frequent
constructs observed, and studies of these constructs were also strongly reliant on archival
data. In contrast, studies of motivation tended to use questionnaire data more often than
other types of data.

Certain research methods are also more strongly aligned with certain constructs; for
example, field studies were most often used with the construct of social processes in the
first wave, and instrument development was most frequently related to research

Social processes
Socialization; decision making and
leadership; coordination and
collaboration; knowledge
management

Software development practices
Project management planning,
requirements analysis, coding,
testing, release, maintenance Inputs

Processes

Social states
Trust

Task-related states
Roles, level of commitment, shared
mental models

Emergent States

Outputs Member characteristics
Geographic location;
motivation for participation;
individual participation

Project characteristics
License types

Technology use
Types of technology used;
technology feature

Team performance
Success measures;
relationships between
success and variables

Software implementation
FLOSS use in different
contexts

Evolution
Software evolution,
community evolution

Firm involvement practices
Adoption, FLOSS commercialization

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
13

methodology. The level of analysis was also relevant to the constructs studied. As we
have mentioned, the overwhelming majority of studies were at the group level. However,
not all constructs conformed to this trend. Motivation was more often studied at the
individual level and implementation was most frequently studied at the organizational
level, while tasks were studied at multiple levels of analysis. We now present our review
of the literature, drawing on papers from our full collection, using this framework to
structure our discussion (Please refer to Appendix 3 for a complete summary of coding
for each paper we collected.6)

4.2 Inputs
We first discuss papers that analyzed an input to the FLOSS project process. Inputs
represent the design and compositional characteristics of a team, such as members’ skills
and personalities, group size and composition, technology use and task characteristics
that influence how the teams work [Martins, et al. 2004, Powell, et al. 2004]. Inputs that
have been investigated by previous FLOSS research can be grouped under the labels of
member characteristics, project characteristics and technology use.

4.2.1 Member Characteristics. The member characteristics of FLOSS teams have
been mainly examined with respect to geographical location, motivations at the
individual and firm levels, and participation at the individual level.

Geographic Location. There have been a number of studies of the geographical
location of FLOSS participants. By using self-reported descriptions of developer activity
containing geographical information that are by-products of project practices, these
studies claimed that FLOSS involves global development efforts, dominated by European
and North American participants, with a leading position of the former. For example, by
examining the Linux CREDITS file on all major kernel releases and developer contact
information on the GNOME project website, Lancashire [2001] showed a predominance
of developers in the United States and Northern Europe in raw numbers of contributors.
After adjusting for population size and prevalence of Internet access, the U.S. declines in
influence (high absolute numbers but low relative numbers) while Europe, especially
Northern Europe, grows in importance. Based on data from code repositories, Ghosh
[2006] revealed Europe is the leading region in terms of globally active FLOSS software
developers and global project leaders, followed closely by North America. Asia and Latin
America face disadvantages at least partly due to language barriers, but may have an
increasing share of developers active in local communities. By tracing individual-level
information such as email addresses and time zone information from SourceForge
database and the mailing list archives of Debian, GNOME and FreeBSD projects,
Gonzalez-Barahona, et al. [2008] reported that North America and Europe (especially
Germany, UK and France) are the top regions for FLOSS developers. Further, European
developers have overtaken North American developers in terms of active participation in
recent years. Other studies have confirmed the relatively high representation of European
FLOSS participants, particularly from Germany and Finland [Dempsey, et al. 2002,
Tuomi 2004].

Motivation for participation. FLOSS teams are nothing without contributing
participants and the question of what motivates participation has been a central theme in
studies of FLOSS. Much of the empirical work in this area is driven, at least rhetorically,

6 Appendix 3 is available at
http://floss.syr.edu/system/files/Appendix%202%20Coding%20Scheme.pdf

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
14

by a reaction to early analytical modeling articles by economists (e.g. [Lerner and Tirole
2002, Lerner and Tirole 2005a]) who argued that motivation is derived from indirect
signaling about quality, with the payoff to come in higher career earnings. While it would
be premature to argue that this work has been discredited, the empirical work on
motivations has found little evidence for these expected motivations. In general, this body
of research has addressed individuals’ motivations for joining FLOSS development, as
well as those of firms.

Motivation at individual level. Most research has focused on individual motivations.
Early empirical work on this topic documented a range of factors that propel individuals
to contribute to FLOSS projects, with consistent results. These studies found that
motivations are heterogeneous, and generally there are three types: extrinsic motivations,
intrinsic motivations and internalized extrinsic motivations. Our analysis revealed that
reputation [Hann, et al. 2004] and reward motives such as career development [Hann, et
al. 2002, Hars and Ou 2002, Orman 2008] are the two most frequently mentioned
extrinsic motivations. Enjoyment-based motivations such as fun [Ghosh 1998] and
sharing or learning opportunities [Shah 2006, Ye and Kishida 2003] are the two most
commonly mentioned intrinsic motivations. User needs [Lakhani and von Hippel 2003,
Lerner and Tirole 2002] are the most commonly mentioned internalized extrinsic
motivations.

Recently, researchers have advanced this line of research by exploring what motivates
individuals to continue participating in FLOSS [e.g. Fang and Neufeld 2009, e.g. Shah
2006, Wu, et al. 2007]. Results show that individuals’ motives are not static, but evolve
over time. For example, based on interviews and archive data analysis of a FLOSS
project hosted on SourceForge, Shah [2006] found that a need for software development
drives the initial participation, but the majority of participants leave once their needs are
met. For the remaining developers other motives evolve, and participation may become a
hobby. By studying OpenOffice.org, Freeman [2007] argued that individuals’
motivations to join and continue participate in the FLOSS projects are related to personal
history prior to and during participation. In the PhpMyAdmin project, Fang and Neufeld
[2009] revealed that initial motivations to participate does not effectively predict long-
term participation, but situated learning and identity construction behaviors are positively
linked to sustained participation.

A few studies have gone beyond reports of motives to examine how intrinsic,
extrinsic and other factors interact to influence individuals’ participation in particular
projects. [e.g. David and Shapiro 2008, Roberts, et al. 2006]. For examples, by studying
135 projects on SourceForge, Xu et al. [2009] found that individuals’ involvement in
FLOSS projects depends on both intrinsic motivations (i.e., personal needs, reputation,
skill gaining benefits and fun in coding) and project community factors (i.e., leadership
effectiveness, interpersonal relationship and community ideology). Through their
comparison of FLOSS developers in North American, China and India, Subramanyam
and Xia [2008] found that developers in different regions with similar project preferences
are driven by different motivations. For instance, for projects that are larger in scale,
more modular and universal in nature, Chinese developers are found to be drawn by
intrinsic motives while Indian developers are found to be mostly motivated by extrinsic
motives.

Motivation at firm level. At present, more and more software companies are involved
in open source software development, primarily through creating a service business
around open source software, or by sponsoring open source software and employing

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
15

software engineers to participate [West and O'Mahony 2005]. Surveys have shown that as
many as 45% of contributors are paid by firms for their participation, either directly or
indirectly [Hars and Ou 2002]. Research on this topic has also examined the reasons that
companies are investing internal resources in FLOSS development. For example,
Bonaccorsi and Rossi [2006] found that firms are motivated to be involved with FLOSS
because it allows smaller firms to innovate, because “many eyes” assist them in software
development, and because of the quality and reliability of FLOSS, with, not surprisingly
for firm motivations, the ideological fight for free software coming at the bottom of the
list. In comparison with individuals, they found that firms focus less on social
motivations such as reputation and learning benefits. Similarly, by studying the firm-
developed innovations embedded within Linux, Henkel [2006] emphasized the
importance of receiving outside technical support as a motivator for revealing code.

Individual participation. A few studies have examined reported individual measures
of time commitment, using either self-reports or attempts to impute total time from public
records (such as lines of code contributed or mailing list messages sent). Luthiger Stoll
[2005] found that participants spend an average of 12.15 hours per week, with project
leaders averaging 14.13 hours, and bug-fixers and otherwise active users at around 5
hours per week. Lakhani and von Hippel [2003] studied the amount of time participants
spend reading and answering user support questions in the Apache forums, finding that
the most frequent answer providers spend 1.5 hours per week, but that frequent
information seekers spend just half an hour.

In addition to actual time spent, researchers have examined individual tenure with
projects, or the length of time that participants continue to participate. Howison et al.
[2006b], who studied 120 relatively successful SourceForge projects, found that the most
common length of participation, across all roles, is no longer than a single month,
reflecting a highly skewed distribution of participation. The tenure of participants varies
significantly according to their roles. For example, Robles and Gonzalez-Barahona [2005]
found comparatively long tenure amongst Debian package maintainers (more than half of
the maintainers in 1998 continued to maintain their packages in 2005.)

More recent work has explored the factors that influence individuals’ level of
contribution. Roberts et al. [2006] studied the impact of different motivations on
individual contribution levels in Apache project. The results showed developers’ paid
participation and status motivations lead to above-average contribution levels; use-value
motivations lead to below-average contribution levels; and intrinsic motivations do not
significantly impact average contribution levels. In another study, Fershtman and Gandal
[2007] studied the relationship between licenses types and individuals’ contribution level.
They found that the output per contributor in open source projects is much higher when
licenses are less restrictive.

4.2.2 Project characteristics. Another input variable that is often examined in the

FLOSS literature is project characteristics, that is, the distinguishing features of these
projects. Software license types attract the most attention in this topic as a particularly
concrete differentiator of FLOSS projects. Licensing is also one of the most important
tactics that used by a project to allow its intellectual property to be publicly and freely
accessible and yet governable [O'Mahony 2003].

The license type used in a project has been identified as playing a crucial role with
respect to all activities in FLOSS development, such as motivations, coordination, and
relationships with commercial firms [Rossi 2006]. The definitions of different licenses

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
16

are complex legal terms and significant ambiguities still remain about their interpretation
[Lerner and Tirole 2005b]. In empirical research, licenses are usually described as falling
into three classes according to their relative restrictiveness7 [Fershtman and Gandal 2007,
Lerner and Tirole 2005b]: unrestrictive (e.g., the Berkeley Software Definition (BSD)
license), restrictive (e.g., Lesser General Public License (LGPL)), and highly restrictive
(e.g. General Public License (GPL)).

A few empirical studies have taken this framework to examine the influence of
license choices on various aspects of FLOSS development. By examining the
SourceForge projects, Lerner and Tirole [2005b] examined the relationships between
project types and the license choices. For example, they found that highly restrictive
licenses are more common for projects geared towards end-users, but they are
significantly less common for projects that aimed at software developers. Some research
has examined the impact of license choices on FLOSS team effectiveness, but the results
are mixed. Using data gathered from the Freshmeat website (http://www.freshmeat.net/),
Stewart and her colleagues [2005, 2006] found that OSS projects that use a non-
restrictive license become more popular over time than those that use a restrictive license.
On the other hand, using data from 62 projects in SourceForge (www.sourceforge.net),
Colazo et al. [2005] found a reverse result, indicating that copyleft/restrictive licenses are
associated with more successful projects in terms of higher developer membership and
productivity.

4.2.3 Technology Use. The type of technology used by FLOSS teams is an important

input since FLOSS team members coordinate their activity primarily by means of
computer-mediated communications. But surprisingly little research has examined the
use of different software development tools and their impact on FLOSS team activities.
One exception is Scacchi [2004], who discussed the importance of software version
control systems such as CVS or Subversion, for coordinating development and for
mediating control over source code development when multiple developers may be
working on any given portion of the code at once. This paper also discussed the
interrelation of CVS use and email use (i.e. developers checking code into the CVS
repository discuss the patches via email). Michlmayr [2003] illustrated the importance of
bug trackers to coordinate among those working on questions and answers.

A small body of research studied the tools developers or users use to share and
exchange knowledge. For example, Robbins [2002] discussed nine types of commonly
used OSS engineering tools and illustrated their impact on the software development
process. Using data from the developer mailing lists of two open-source software projects,
Lanzara and Morner [2004] argued that technological artifacts and software-based
artifacts are critical for knowledge sharing and creation in OSS development.

4.3 Processes
Processes are the dynamic interactions among FLOSS team members as they work on a
project. Research on processes in FLOSS development has focused on software
development practices and social processes within the projects. Increasing firm
involvement in FLOSS development is leading researchers to investigate how firms make

7 The label “restrictiveness” is used in the literature to refer to whether the modified versions of

the software are also required to be open and whether the modified versions of the software may
only be combined with software distributed under licenses that share the first requirement
[Stewart, et al, 2006; Lerner and Tirole, 2005].

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
17

use of FLOSS to gain profits. In the following section, we review the empirical findings
related to these three themes.

4.3.1 Software development practices. In this section, we review the findings of
research on the practices followed by FLOSS teams for software development.
Researchers have suggested that FLOSS development does not seem to readily adopt
modern software engineering processes [Scacchi 2004]. Projects usually rely on “virtual
project management”, meaning that different people take on management tasks as needed.
In this way, the project also mobilizes use of private resources [Scacchi 2004]. In the
following sections, we consider the research on more specific practices, using the systems
development lifecycle [Blanchard and Fabrycky 2006] as an organizing structure.

Planning. It is commonly held that FLOSS projects do not engage in formal planning.
For example, Glance [2004] examined the kernel change logs to determine the criteria
applied for releasing the Linux kernel. She argued that a release contains whatever has
been added, as opposed to a clear process of planning the functionality needed for a
release. However, projects often do have TODO lists or feature requests that form a sort
of agenda for development [Yamauchi, et al. 2000]. Planning seems to be one
contribution made by firms involved with projects [Fitzgerald 2006].

Software Requirements Analysis. Similar to the planning stage, FLOSS projects are
often said to not conduct formal software requirements analyses. Scacchi [2004] stated
that FLOSS projects do not have conventional requirements documents. Instead,
requirements are found in email messages, which emerge from discussions among users
and developers about what the software should and should not do, and from after-the-fact
assertions by developers about the need for a new piece of functionality. Similarly,
Mockus et al. [2002] stated that a user community can communicate its needs through
bug reports or feature requests. Again, this is an area in which firm involvement may lead
to changes.

Coding. Much work in this area focuses on modularity and software architecture.
Modularity has been seen as key to the feasibility of distributed development. Scacchi
[2004] noted the importance of what he called “software extension mechanisms” that
allow developers to easily add functionality to FLOSS projects via scripting or plug-ins.
MacCormack, et al. [2006] reported that a redesign of Mozilla results in an architecture
that is much more modular that its predecessors, which emphasized the important role of
purposeful managerial actions in increasing modularity.

Testing. There are mixed results reported by the research on testing processes in
FLOSS development, which vary by projects. Glance [2004] noted that the Linux kernel
release process is not based on formal testing. Rather, it relies on individuals testing their
own code before submission and subsequent testing by users of releases, also described
as peer review [Glance 2004]. Stark [2002] noted that peer review has been used in
conventional development as well and cited research showing that it works without
meetings. Although this survey showed that only half of 23 FLOSS respondents said that
their code was reviewed, one possible explanation is that it might be reviewed later, since
it is open to inspection by any interested party. It also noted that any quality control
approach relies on developer commitment to the process, which may come from
compliance, identification or internalization, suggesting FLOSS relies on later
mechanisms. Other studies have shown that some projects have more formal testing for
releases. For example, Thomas [2003] described several testing processes, such as the

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
18

Linux Test Project and the Linux Stabilization Project. Dinh-Trong and Bieman [2005]
noted that the FreeBSD project also has a more defined testing process.

Release. The nature of open code is that users can almost always access the latest
version of the code. However, as the code is being worked on it may or may not be stable,
so many users prefer to use a “released” version of known quality. However, it is difficult
to identify a single FLOSS approach to releases. Erenkrantz [2003] compared release
practices of Apache httpd, Subversion and Linux on dimensions of release authority,
versioning, prerelease testing, approval of releases, distribution, and formats, and noted
considerable differences among the projects. Some projects have quite informal release
schedules, following advice from Raymond [1998] to “release early; release often”. For
example, Glance [2004] found that in Linux, releases comes at an irregular rate. It is not
clear what drives the schedule, but a release pattern is observed in terms of accepting
patches for a while, then freezing acceptance of new code to allow the system to stabilize,
though stability is assessed only by an absence of reported problems. In contrast, some
projects have more organized approaches to releases. Dinh-Trong and Bieman [2005]
reported that FreeBSD releases a new version every four months. A “Release
Engineering Team” coordinates the release, following a pattern similar to that of Linux.

Maintenance. Maintenance is a primary activity in FLOSS development, as in
conventional development. In FLOSS development, however, the nature of maintenance
has been described as more like reinvention, which acts as “a continually emerging
source of adaptation, learning, and improvement in FLOSS functionality and quality”
[Scacchi 2004]. Studies of maintenance in FLOSS has focused on activities such as
problem solving processes, user support practices [Lakhani and von Hippel 2003],
change cycles (bugs and new features), software quality maintenance work, improvement,
bug fixing processes, problem resolution interval, patches (internal or external
submission), shallow bugs, and incident/problem/change management. Maintenance has
been done differently in different projects. For example, in Linux, user support may be
provided commercially [Leibovitch 1999]. Other projects have commercial sponsors who
sell support (e.g., MySQL, SugarCRM). Smaller projects tend to rely on community
support, e.g., via email or discussion boards. However, Singh et al. [2006] analyzed help
interactions and found that this process is often inefficient because initial posts lack the
necessary information to answer questions, resulting in back-and-forth postings. The
authors suggested that some details be captured automatically as part of initial reports,
and also articulated the potential benefit of developing practices and tools for more
explicitly reusing information, e.g., marking particularly helpful answers to automatically
populate a kind of FAQ.

4.3.2 Social Processes. Social processes capture cognitive, verbal and behavioral

activities performed by team members to manage interpersonal relationships among them
[Marks, et al. 2001]. To date, the majority of FLOSS research pertaining to social
processes has focused on socialization, decision making and leadership, coordination and
collaboration, and knowledge management.

Socialization. The work on motivations shows that there is a large pool of people
with motivations sufficient to participate in FLOSS development. Yet this number is
substantially smaller than the number of active users of software and, presumably,
smaller than the number of people who have ever considered participating in an open
source project. The process of moving from a non-participant to a fully-fledged FLOSS
developer has been addressed in a small volume of literature on socialization in FLOSS

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
19

projects, which examines the strategies and processes through which new members join
an existing FLOSS development community. This body of literature treats socialization
as a process that places emphasis on a participant's actions and willingness to understand
not just the code base but also the social structure of the project.

For example, in a study of socialization in the Freenet project, von Krogh et al. [2003]
proposed that joining script (the level and type of activity a joiner goes through to
become a member of the development process), specialization of new members,
contribution barriers, and the feature gifts a new member can contribute are related to the
process of being a new member. Duchenaut [2005] studied socialization in the Python
project from both learning and political perspectives, and, confirming the findings of von
Krogh et al. [2003], found that participants who move to the center of a project act in a
way that expose more of the network to them, come to understand the relationships
between people and code and, largely through action in the form of code, or detailed
discussions of code, build legitimacy and “enrolled allies” for their evolution towards the
core of the project. He also highlighted the manner in which the onus for socialization
falls almost entirely on the would-be developer, rather than the team. The process thus
acts as a filter for participants that match the project. Because of the importance of
attracting new developers, some projects have devoted efforts to making the project more
accessible, though the success of these efforts does not appear to have been studied.

Decision Making and Leadership. In conventional teams, decision-making
effectiveness is very important to team effectiveness. A lack of transparency and
consideration in the decision making process tends to alienate those who are not being
consulted and erodes the sense of community [Jensen and Scacchi 2005].

One common concern in studies of FLOSS teams’ decision making is decision style,
which depends on the hierarchy of the developers. As Gacek and Arief [2004] pointed
out, a stricter hierarchy differentiates between levels of developers and generates a more
centralized power structure, while a looser hierarchy treats developers on a similar level
and implies a decentralized decision-making process. Both centralized and decentralized
decision making styles have been examined. Shaikh and Cornford [2003] examined how
debate over version management tools (CVS versus BK) reflects governance and
decision making processes in the Linux Kernel community, providing an example of a
centralized decision making process. Moon and Sproull [2000] also pointed out that in
Linux, Linus Torvalds originally made most of the key decisions for the team. German
[2003] provided a decentralized decision making example by studying the GNOME
project. Committees and task forces composed of volunteers are created to complete
important tasks. Annual face-to-face meetings are also organized to make major decisions.
By doing so, GNOME flattens the organizational structure of the project and allows
broader participation in the decision-making process. In the Apache web server project,
members adopt the voting mechanism to reach consensus [Fielding 1999]. Researchers
have also noted that decision making styles might change over the life of the project. In
the early life of a project, a small group will control decision making, but as the project
grows, more developers will get involved [Fitzgerald 2006].

Closely related to decision-making, leadership has been much discussed in the
literature. The main duties of a leader in FLOSS projects includes providing a vision;
coordinating contributors’ efforts; attracting developers to the project; and keeping the
project together and preventing forking [Giuri, et al. 2008, Lerner and Tirole 2002].
Research has focused on who can become a leader in FLOSS development teams. First,
leaders are usually not appointed, and in most cases not formally identified, but rather

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
20

emerge from participation in FLOSS development. Individuals are perceived by others as
leaders based on their sustained and strong technical contributions [Scozzi, et al. 2008],
diversified skills [Giuri, et al. 2008] and a structural position in their teams [Evans and
Wolf 2005, Scozzi, et al. 2008]. Second, FLOSS teams usually exhibit shared leadership
instead of having a single leader [Sadowski, et al. 2008]. According to Fielding [1999],
shared leadership enables these teams to continue to survive independent of individuals,
and enables them to succeed in a globally distributed and volunteer organizational
environment. Similarly, Mateos-Carcia and Steinmueller [2008] reported that the
distribution of authority and decentralization found in the Debian community facilitate its
growth and development.

Coordination and collaboration. Collaboration occurs through coordination, which
manages dependencies between activities [Malone, et al. 1999]. The FLOSS environment
makes coordination more difficult for several reasons. Volunteers without formal
contracts, geographically and temporally dispersed contributors, the virtual environment,
and different types of actors (firm-sponsored vs. volunteers) are factors that all
complicate coordination efforts [van Wendel de Joode and Egyedi 2005]. Coordination
activities play an important role in FLOSS development, and are critical to project
success [Sagers 2004] and to sustaining collective efforts in FLOSS teams, especially for
large project such as Linux [Kuwabara 2000].

The backgrounds and characteristics of the different projects may influence the use of
coordination mechanisms in general. For example, Java tends to uses ex ante mechanisms
(i.e., coordination before taking action) while Linux tends to uses ex post mechanisms
(i.e., coordination after action), which researchers suggest is because Java is a company-
sponsored project while Linux is a community project [van Wendel de Joode and Egyedi
2005, Yamauchi, et al. 2000]. Using 10 large FLOSS projects, den Besten, et al. [2008]
found that collaboration effort is associated with the complexity of the code.

The literature review reveals four types of coordination mechanisms that are
frequently discussed in FLOSS development:

Mechanisms to control the number of developers. The general collaborative mode of
FLOSS development is that a small portion of developers are responsible for most of the
outputs [Crowston and Scozzi 2004, Dinh-Trong and Bieman 2005, Koch and Schneider
2002, Mockus, et al. 2002]. Based on a theoretical framework of network governance,
Sagers [2004] demonstrated that restricted access to the development team improves
coordination within the project.

Modularity and division of labor. Modularity is the most explicit mechanism used in
FLOSS development. It keeps the core software product small enough to be handled by a
small core group, and makes communication smooth and effective [Jensen and Scacchi
2005, Mockus, et al. 2002]. An example is Linux, as Dafermos [2001] stated,
“modularity makes Linux an extremely flexible system and propels massive development
parallelism and decreases the total need for coordination”. However, Mockus et al. [2002]
noted that while developers tend to work on the same modules repeatedly, most modules
are worked on by several people, which does not support the notion of individual code
ownership and requires other ways of coordinating. One possible way is to introduce
coordinators to coordinate development between modules, as suggested by Asklund and
Bendix [2001].

Task assignment mechanisms. Findings on task assignment mechanisms across the
literature are quite consistent. Contrary to commercial software development, self-
assignment is observed as the most common mechanism used in community-based

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
21

FLOSS development [Crowston, et al. 2007, Crowston and Scozzi 2008, Crowston, et al.
2005b, Mockus, et al. 2000, Mockus, et al. 2002].

Instructive materials and standardization initiatives. Instructive materials and
standardization initiatives are another means used to coordinate software development
effort. Instructive materials include guidelines for writing software and policies that
enable developers to work independently; standardization initiatives standardize the
software specifications to increase convergence between different files [Jensen and
Scacchi 2005, van Wendel de Joode and Egyedi 2005].

In addition to these coordination mechanisms, teams need mechanisms to manage
conflict. From interviews, van Wendel de Joode [2004] identified four conflict
management mechanisms between firm-supported developers and voluntary developers:
third-party intervention, modularity, parallel software development lines, and the exit
option.

Knowledge management. There is a growing body of research recognizing that
FLOSS development faces knowledge management (KM) challenges because of its
highly distributed, knowledge intensive characteristics [Becking, et al. 2005, Ciborra and
Andreu 2001, Edwards 2001]. This body of research focuses on how knowledge is shared
or reused in FLOSS development [Dafermos 2001, Hemetsberger and Reinhardt 2004,
Huysman and Lin 2005, Lakhani and von Hippel 2003, Lanzara and Morner 2004, Lee
and Cole 2003, Singh, et al. 2006, von Krogh, et al. 2005]. For example, Huysman and
Lin [2005] found that online communities without strict membership requirements
activate cross-boundary learning and knowledge sharing. Based on the analysis of
developer mailing lists of two large-scale open source projects, Lanzara and Morner
[2004] illustrated how the processes of knowledge making and sharing are supported by
dense social interaction and by the peculiar organizing features inscribed in technological
artifacts. Von Krogh et al. [2005] reported on the reuse of knowledge in software
development based on 15 open source projects. The authors found that the effort to
search, integrate and maintain external knowledge influences the form of knowledge to
be reused. Using 128 discussion threads from K Desktop Environment (KDE) mailing list,
Kuk [2006] reported strategic interaction including conversational interactivity, cross-
thread connectivity and participation inequality expands knowledge sharing, but extreme
concentration of participation would exert a negative effect on knowledge sharing.

Learning theory provides a common theoretical perspective for this work, which
frequently draws on communities of practice literature to conceptualize how knowledge
is created and shared online. Using the case of the Linux kernel development project, Lee
and Cole [2003] described how the product development process can be effectively
organized as an evolutionary process of learning driven by criticism and error correction.
Hemetsberger and Reinhardt [2004] took a social view of learning and knowledge
creation to demonstrate how online communities of practice successfully overcome the
problem of tacit knowledge transformation through technological tools, task-related
features, collective reflection, stories and usage scenarios.

4.3.3 Firm involvement practices. The success of FLOSS has attracted more firms

interested in profiting from FLOSS development; however, research on this aspect of
FLOSS involvement is limited. Correspondingly, researchers are now investigating the
processes of how firms make use of FLOSS, or the FLOSS commercialization process
[Bonaccorsi, et al. 2006, Dahlander 2007]. Research has revealed that firms usually adopt
a hybrid production model by combining proprietary software and open source software

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
22

models [Bonaccorsi, et al. 2006]. The strategies that firms use to create new or utilize
existing FLOSS communities are also discussed [Dahlander and Magnusson 2005]. For
example, by studying four firms involved with FLOSS, [Dahlander and Magnusson 2008]
discovered three ways firms use to connect with FLOSS communities: accessing
development in the community in order to extend their resource base; aligning their
strategy with the work in the community; and assimilating the work from the community.

4.4 Emergent States
In this section we review research that has examined moderators between inputs and
outputs in the form of emergent states of the FLOSS project teams.

4.4.1 Trust. We first examine research that considers project team trust. Trust has
been studied extensively in small groups research, and has been noted as a determining
factor to achieve the effectiveness of team collaboration. Researchers have also suggested
that trust is important in FLOSS team development [Evans and Wolf 2005, Stewart and
Gosain 2001]. Trust is often related to team effectiveness. For example, Stewart and
Gosain [2001] proposed that shared ideology enables the development of affective and
cognitive trust, which in turn lead to group efficacy and effectiveness. But not all
researchers share the same belief. In a study of published case studies of FLOSS projects,
Gallivan [2001] found that group effectiveness can be achieved in the absence of trust if a
set of control and self control mechanisms is presented.

4.4.2 Task Related Structures. We next consider task related social structures,

including roles, level of commitment and shared mental models.
Roles. In an emergent context, something as seemingly simple as role becomes more

complex. While in one context and one time, a participant may be a core developer, in
another context they may be a support-question asker [Ye and Kishida 2003]. Most
research on roles focuses on the differences between distinct roles and how to define
roles. Gacek and Arief [2004] suggested distinguishing between passive and active users,
between non-developers and developers, and between co-developers and core developers,
with corresponding increases in responsibility and contribution.

Alternative methods have been used to examine the sizes of the core and periphery
groups. Crowston et al. [2006b] studied the distribution of contributions to the bug-
tracking systems for 120 Sourceforge teams using three different methods: first, the self-
reporting of teams based on the list of developers on the Sourceforge site; second,
core/periphery measures using the social network structure; and third, an analogy to
Bradford's law about the distribution of academic publications. The measures indicated
that the developer's list is not a good indicator of core membership (at least in bug-fixing)
and that the skew of contribution in the communications domain is substantially higher
than in the code domain. The more reliable measures peg the core group size at a median
of 3 (about 5% of participants in the project). The results are in line with early results in
sociology on feasible group sizes, such as James [1951].

Lin [2006] described interviews she conducted with firms involved in open source
and with developers that had moved from community involvement to working for a
company, but still doing open source. She found that developers working inside
companies have hybrid roles, such that they can draw on resources from the firm and the
community, but have to balance their loyalties and act as translators in situations of
different aims.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
23

Level of Commitment. Researchers have also been interested in the distribution of
different types of effort, such as code contribution [Mockus, et al. 2000, Mockus, et al.
2002], communication contribution [Crowston and Howison 2005] and support
contribution [Lakhani and von Hippel 2003]. Not all development teams and community
members contribute equally, and the ratio of contributions has become a frequent
question of interest in empirical studies of FLOSS development. In a study of the Apache
community, Mockus et al [2002] observed that the top 15 contributors (out of 388 total)
have contributed over 83% of modification requests and 66% of problem reports, which
is lower but still quite high. They compared these contribution distributions to
commercial projects and found them to be higher, sometimes substantially so, suggesting
that while FLOSS projects have larger total numbers of contributors, the bulk of activity,
especially for new features, is quite highly centralized. Efforts to replicate these findings
have tended to show a smaller differential in the distributions. Dinh-Trong [2005], in a
study of the FreeBSD project, found that the top 15 contributors (of 354) contribute only
57% of new source code and one needs the top 47 to reach the 80% figure. Bug fixing is
again found to be more widely distributed, with the top 15 checking in only 40% of the
changes. They observed that these statistics cumulate effort over the entire lifetime of the
project and so recalculated the measures within a three-year window, but still found that
the core group for FreeBSD is larger than that of Apache's. Koch and Schneider [2002],
studying the GNOME project, also found lower skew (top 15 contributing only 48%) but
argued that there is still evidence for a small, more active, core group.

Research has only scratched the surface of the context of individual participation in
FLOSS projects. For example, given that many participants work on projects as
volunteers, it follows that work on a particular project, or on FLOSS projects in general,
is only one among many activities the individual pursues, and not normally the main
activity. This observation seems axiomatic in the case of volunteers but is shared even
amongst those who are paid for activities relating to their participation. Fielding [1999]
related that all the core participants in Apache have other “real jobs”, which usually
involve using the software for which they are a contributor. Lakhani and von Hippel
[2003] found that Apache participants spend about 30% of their work time on web
servers.

Luthiger Stoll [2005] surveyed developers about the balance between work time and
spare time. The author found that over 60% of the time spent contributing is considered
spare time by participants and those who consider they have more spare time are likely to
spend more of it developing FLOSS, although the strength of the relationship falls as
spare time continues to rise (decreasing returns). This finding is supported by Michlmayr
[2004], who reported that participants understand others to have “real” jobs that
justifiably interfere with their participation. In addition, Crowston et al. [2005a] reported
that participants at face-to-face conferences cite the ability to spend long blocks of
relatively uninterrupted time focusing on a FLOSS project as a major benefit of
attendance.

Shared Mental Models. Prior research suggests that the existence of accurate shared
mental models that guide member actions are important for team effectiveness [Cannon-
Bowers and Salas 1993]. Research on software development in particular has identified
the importance of shared understanding in the area of software development. Curtis et al.
[1990], noted that, “a fundamental problem in building large systems is the development
of a common understanding of the requirements and design across the project team.”(p.52)
They went on to say that, “the transcripts of team meetings reveal the large amounts of

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
24

time designers spend trying to develop a shared model of the design” (p.52). Scozzi et al.
[2008] analyzed mental models in a FLOSS project using cognitive mapping and process
analysis. Specifically, the authors compared the mental models of four developers from
the Apache Lucene Java project. Their analysis suggested that there is a high level of
sharing among core developers on aspects such as key definitions (e.g., project goals,
users and challenges) and some aspects of the causal maps, but the sharing is not
complete, with some differences related to tenure and role in the project.

4.5 Outputs
Finally, we consider research that has examined the outputs of FLOSS project teams.
Outputs represent task and non-task consequences of a FLOSS team’s efforts or the
outcomes of FLOSS implementation. Three recurring themes were observed in the
research of FLOSS output: 1) the performance (i.e. effectiveness/success) of the team; 2)
open source software implementation; and 3) evolution of the software and the project.

4.5.1 FLOSS Team Performance. We classify this body of research into two themes: 1)
measures of FLOSS success and 2) relationships between performance and other
variables.

Measures of FLOSS team/project success. Success is one of the most frequently
used dependent variables in information systems research. So it is necessary to
understand how previous research assesses the success of FLOSS projects. Several
measures have been proposed. Based on a combination of literature review of IS field, a
consideration of the OSS development process, and an analysis of the OSS developers’
opinions, Crowston et al. [2006a] identified 7 measures of FLOSS project success:
system and information quality, user satisfaction, use, individual and organizational
impacts, project output, process and outcomes for project members. Similarly, Lee, et al.
[2009] proposed five measures of FLOSS success based on Information Systems (IS)
literature: software quality, use, user satisfaction, individual net benefits and community
service quality. These measures indicate that FLOSS success is a multidimensional
construct, but most empirical research has only used one of these dimensions to assess
success.

The most frequently used measure of success emerging from these studies is system
and information quality. Although theory has described indicators such as code quality
and documentation quality to measure FLOSS system and information quality [Crowston,
et al. 2006a], the majority of the empirical work uses code quality measures. This body of
literature provides a variety of indicators to measure code quality such as maintainability
[Bezroukov 1999, Hecker 1999, Samoladas, et al. 2004, Schach, et al. 2002, Schach, et al.
2003], product/software quality [Glance 2004, Gyimothy, et al. 2005, Michlmayr 2003,
Schmidt and Porter 2001, Stamelos, et al. 2002], defect density [Mockus, et al. 2000,
Paulson, et al. 2004], usability [Hanson, et al. 2005, Nichols, et al. 2001, Schmidt and
Porter 2001], reliability [Gyimothy, et al. 2005, Harrison 2001, Leibovitch 1999, van
Wendel de Joode and de Bruijne 2006], and value of software output [Harrison 2001].

Relationship between success and other variables. More frequently, research
focuses on exploring the relationship between success and its antecedent variables.
Various factors have been examined for their impact on project effectiveness, typically
focusing on specific project characteristics such as software components, team sizes,
project types, project life cycles, sponsorships, ideology and license types. For example,
based on longitudinal data on FLOSS projects hosted on SourceForge, Subramaniam et al.
[2009] found that restrictive licenses (as defined in section 4.2.2) have an adverse impact

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
25

on FLOSS success. By surveying projects hosted on SourceForge website, Stewart and
Gosain [2006] found that OSS community ideology impacts team effectiveness in terms
of attraction and retention of developer input and the generation of project outputs. In
another study of 240 open source projects registered on Freshmeat, Stewart and Ammeter
[2002] found that sponsorship of a project, project types, and project development status
are all related to one measure of project success: popularity (i.e. how much user attention
is focused on the project).

Some studies reported the impact of different processes on team effectiveness,
including knowledge sharing [Mendez-Duron and García 2009], network embeddedness
[Grewal, et al. 2006] and leadership [Long and Yuan 2005]. For example, based on 75
FLOSS projects, Capra and colleagues [2008] reported a high degree of openness in
governance practices leads to higher software quality.

A few studies investigated the impact of emergent state factors on project
performance. For example, using content analysis to examine a set of published case
studies of OSS projects, Gallivan [2001] noted that although trust is rarely mentioned,
ensuring control is an important criterion for effective performance within OSS projects.
Wynn [2004] found the fit between the life cycle stage and the specific organizational
characteristics of projects (focus, division of labor, role of the leader, level of
commitment, and coordination/control) is an indicator of the success of a project as
measured by the satisfaction and involvement of both developers and users.

Further, some studies compared the quality of open source software with propriety
software and the results are mixed. For example, by comparing three closed source
software projects and three open source software projects, Paulson et al. [2004] found
that generally OSS has fewer defects than closed source software. By contrast, Stamelos
et al. [2002] offered a structural code analysis and suggested that the code quality of an
OSS is lower than the quality implied by an industrial standard. It seems likely that these
results vary greatly by projects, suggesting the need for further research on antecedents of
code quality.

4.5.2 Open source software implementation. Outside of the mainstream of most
FLOSS research, some studies have examined to how OSS is being adopted and used in
different contexts [Bleek and Finck 2004, Fitzgerald and Kenny 2003, Fitzgerald and
Kenny 2004, Goode 2005, Holck, et al. 2005, Miralles, et al. 2005, Vemuri and Bertone
2004, Waring and Maddocks 2005, Yan, et al. 2005]. Dinkelacker et al. [2002] described
activities at Hewlett Packard that aim to adapt the benefits of open source software for
internal use, through the progressive introduction of open source practices. They began
with “inner source,” the opening of all code behind the corporate firewall, then
“controlled source” which restricts access to contracted partners and finally “open
source,” where ‘the community’ in general was invited to participate. Chan [2004]
examined the practices that surround the emergence of free software legislation in Peru.
In addition to the research that studies OSS adoption outside OSS communities, Verma et
al. [2005] explored factors that influence FLOSS adoption and use within two different
open source communities: one in the U.S. and one in India. They found that the degree of
compatibility with users’ mode of work, and ease of use are the two significant factors
that influence FLOSS use in the U.S. open source community, but for the India group,
compatibility is the only significant factor.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
26

4.5.3 Evolution. The literature on FLOSS evolution has focused on two aspects: the
evolution of the product, which is the software developed in this context; and the
evolution of the community, which develops and maintains the software. Different types
of FLOSS projects have different patterns of system evolution and community evolution
[Nakakoji, et al. 2002].

Evolution of the software. Research confirms that the evolution of projects’ size
over time seems to contradict the laws of software evolution proposed for commercial
software [Koch 2004]. For example, Godfrey and Tu [2000] observed that the evolution
of the Linux Kernel does not obey Lehman’s laws which states that “as the system grew,
the rate of growth would slow, with the system growth approximating an inverse square
curve”.

Some literature looks in detail at code evolution patterns. Scacchi [2004] noted that
code tends to evolve incrementally rather than change radically. Capiluppi [2004] found
an unbalanced evolution patterns for some codes in an OSS project called ARLA – “some
[code] branches may appear more appealing than others, and are extensively evolved,
while other[s] remain in the same status for all the life cycle”. Antoniol et al. [2002]
studied the duplication of code over time in the Linux kernel. They found that “Linux
system does not contain a relevant fraction of code duplication. Furthermore, code
duplication tends to remain stable across releases, thus suggesting a fairly stable structure,
evolving smoothly without any evidence of degradation” (p.755).

Evolution of the community. Another focus is on the evolution of the community,
which discusses the dynamic roles of developers and users over time. Oh and Jeon [2004]
discussed the impact of member retirement on community structure. They argued that a
snowball effect might lead more members to leave when one member drops out, which
might result in network separation and disintegration, so it may be important to maintain
a balanced composition of all the different roles in a community [Nakakoji, et al. 2002],
By studying three FLOSS projects, Long and Siau [2007] found that project interaction
patterns evolve from a single hub at the beginning, to a core/periphery model as the
projects mature.

Of course, code and community do not exist separately. They co-evolve and have an
impact on each other. Nakakoji et al. [2002] argued that the contribution made by
members is the source of system evolution, and the system evolution in turn affects the
contribution distribution among the developers, and thus redefines the roles of the
contributors. Similarly, Capiluppi [2004] argued that “when the tree structure reaches
some status, the process of joining as a core developer seems to forestall” (p.23).

5. DISCUSSION
In section 4 we reviewed the empirical research on FLOSS development in an effort

to assess the state of the literature. From the analysis we can see that we are still in the
early stages of investigation of FLOSS and significant empirical work remains to
understand this phenomenon.

The literature to date has been relatively limited in scope and many aspects of FLOSS
development have received little examination. In this section, we discuss important areas
that have remained under-researched and provide direction for future research. The
analysis is again organized around the Input-Mediator-Output-Input (IMOI) model that
was used in section 4. We also address a number of methodological and theoretical issues
related to the study of FLOSS.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
27

5.1 Inputs
There is an opportunity to pursue further research on FLOSS development inputs,
particularly their impacts on the dependent variables. For example, sufficient detail has
been provided regarding why individuals contribute to FLOSS development, but little
work has been done to examine the impact of various motivations on individual
behaviors in FLOSS development. It seems likely that motivations are linked to other
facets of contribution, such as longevity of participation or achievement of
leadership. For example, Hertel et al. [2003] reported that future career prospects are
significantly related to planned future activities, but not significantly related to actual
contribution, suggesting that this motive might provide initial drive, but go unrealized. It
would be an interesting finding to discover whether participants with particular types of
motivation are more likely to continue to contribute or to achieve leadership roles.
Further, few studies have examined changes in motivation over time, although previous
research has indicated that motivations may alter over time. For example, Ghosh [2002]
mentioned that reputation is a stronger motivation amongst the longer term participants
(who might be expected to actually have garnered reputation). But these analyses are
preliminary and longitudinal analyses are needed to examine the phenomenon in
detail. This is particularly important for insight on the rise of bounties (e.g., Gnome) and
temporary corporate support of participants (e.g., Google's Summer of Code).

Software types and technologies used in FLOSS are two other interesting input
variables that need further examination. Software types play an important role in FLOSS
development and might attract different contributors and users, enable different
coordination mechanisms, and establish different relationships with firms. Software types
play an important role in FLOSS development. For example, Stewart and her colleagues
[2006] found that organizational sponsorship influences the impact of licensing on
development activities. However, limited work has examined the social implications of
the differences in types of software produced by FLOSS developers. There is an
opportunity to consider software type and its relationship to various aspects in FLOSS
development in a more theoretically informed manner. For example, we found that the
results of research on the impact of license types on team effectiveness are mixed. One
possible explanation might be that software types (e.g. based on the intended audience,
software topics, environment, etc.) have mediating impacts, so it would be important to
study how software types influence the impact of licenses on team effectiveness. Other
questions that might provide interesting insights in this area are: How are software types
related to individuals’ participation in projects? How do software types impact firm
involvement in FLOSS development? How do software types influence social processes
such as decision making in FLOSS development?

Various tools (such as email lists, forums, bug track systems, CVS) play an important
role in FLOSS development. In virtual team research, technologies used by team
members are often examined to see how they coordinate team members’ activities, but
few such studies have been done in the FLOSS context. Future research could further our
understanding of which tools people actually use in FLOSS development, the influence
that tools have upon the choice of a hosting site for a new project, the roles of different
tools in FLOSS development, and how these tools interact and complement each other to
support FLOSS development.

5.2 Processes
Previous research on FLOSS development practices has pointed out that FLOSS

development does not seem to adopt formal procedures in systems development life cycle.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
28

But it might not be the case for some FLOSS projects in practice, especially major
projects. Fitzgerald [2006] argued that “the open source phenomenon has undergone a
significant transformation from its free software origins to a more mainstream,
commercially viable form—OSS 2.0” (p. 587) and the development process becomes less
bazaar-like as strategic planning becomes paramount. For example, many if not all of the
major FLOSS projects have planning and requirements analysis mechanisms. For
instance, a lot of discussion about future Mozilla products comes from monthly meetings
of Mozilla Labs (e.g., http://labs.mozilla.com/2008/07/monthly-labs-meetup-july-2008/).
As companies have increasingly adopted open source software, release scheduling and
planning are also different now. Both commercial and the large non-commercial projects
(e.g., OpenOffice.org and Mozilla Firefox) have created roadmaps and schedules. So
more research is needed to investigate how the adoption of these formal software
development practices influence FLOSS development in a long run.

Previous research on FLOSS development processes has focused on examining
mechanisms used in different processes as described in Figure 6. More research is needed
on factors that affect processes and how the characteristics of FLOSS development
influence these processes. For example, few studies have touched on the impact of team
diversity (e.g., team members’ demographics, motivations, values, and skills) on
individual collaboration. Further, how do external environmental factors, such as project
type, company sponsored versus non-sponsored, interact with team and project
development processes?

Social processes represent an area in which major gaps exist in the FLOSS research
literature. In particular, little research has been conducted on social processes related to
conflict management and team maintenance. Conflicts sometimes can have significant
negative effects on FLOSS development, given its virtual and self-organizing nature.
Team maintenance encompasses the pro-social, discretionary, and relation-building
behaviors that create and maintain reciprocal trust and cooperation between members
[Ridley 1996]. Theorists argue that team maintenance behavior is important because it is
believed to be associated with team effectiveness. Several theories have been used to
examine team maintenance in different contexts, such as social presence in text-based
communication environments [Garrison, et al. 2000], face work in computer-mediated
communications [Morand and Ocker 2003] and organizational citizenship behavior in
traditional settings [Organ, et al. 2006], but little research has been done on this topic in
the FLOSS research literature and several important questions remain unanswered. What
kind of factors likely trigger conflict? What is the role of leaders in conflict management?
How is team maintenance created and sustained over time? Is there any relationship
between project types and team maintenance behaviors?

Another potentially important factor is how projects manage the knowledge necessary
for a successful development effort. Given its highly distributed environment and
dynamic membership, FLOSS development faces particular knowledge management
challenges. Previous research has explored various knowledge management activities
such as knowledge creation and knowledge sharing. Additional research is needed in
order to understand how members integrate knowledge from different sources. In
particular, what mechanisms and team norms are used to store knowledge contributed by
team members? What techniques are used to identify useful knowledge given the huge
information flow?

Despite the increasing commercialization of FLOSS, there are not many studies of the
details of firm participation in projects. This lacuna may be due to the relative difficulty

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
29

of obtaining data from firms. But since one of the often cited reasons for studying FLOSS
is the potential for adapting FLOSS practices to proprietary production environments,
additional research needs to be conducted to investigate how firm–involved FLOSS
projects differentiate from non-firm-involved FLOSS projects. One particularly
interesting topic might be how firm involvement in a FLOSS project changes project
development over time.

5.3 Emergent States
To date, there has been less discussion of team members’ interaction patterns over time.
Roles are probably best studied as structured and emergent in this context, but empirical
FLOSS research has only touched on this [Ye and Kishida 2003]. Some other emergent
states such as trust and shared mental models also remain understudied. Future research
should further our understanding of how these emergent states form, maintain and change
over time. Interesting outstanding questions include, what kinds of factors trigger these
changes? Do different project characteristics and project development phases lead to the
emergence of different emergent state patterns and how? What is the relationship
between processes and emergent states development?

5.4 Outputs
Most current research on FLOSS team effectiveness uses objective measures such as
downloads, code quality, bug fixing time, and number of developers. Behavioral
measures, which are believed to impact members’ desire to work together in the future,
are typically missing. Since FLOSS development is usually a long-term project, it is
important to include this measure in evaluating FLOSS effectiveness.

Another issue is that the link from output to input has not been addressed in previous
literature. In a FLOSS developmental sequence, outputs become the inputs to future
development. Although theorists have realized the importance of the cyclical causal
feedback from outputs to inputs in team interactions [Ilgen, et al. 2005], few empirical
studies incorporating this aspect of the phenomenon have been done in FLOSS research.
More research is needed on how outputs contribute to or change inputs. For example,
how do outputs such as user satisfaction impact team structures in the future?

5.5 Methodological and Theoretical issues
Finally, several methodological issues need to be addressed. First, a significant number of
empirical studies of FLOSS have used archival data e.g., from SourceForge, and this type
of data is not without problems. SourceForge and other forges provide only a limited
amount of easily available data, which is both practically difficult and theoretically
perilous to use in FLOSS research [Howison and Crowston 2004]. Archival data may
also have a high omission rate [Chen, et al. 2004], so more and richer data sources are
needed.

Second, a few studies use self-reported data, which can be problematic in terms of
potential bias and accuracy. For example, some papers use self-reporting measures of
hours spent on a project in order to measure individual effort in FLOSS development.
However, such data may be subject to reporting bias or demand effects, which may partly
explain the lack of evidence for self-interested motivations. Or individuals may be driven
by unexpressed, and therefore undocumented motivations. To overcome such potential
biases, there is a need for such studies to incorporate objective measures of effort, such as
CVS commits, patches applied, tracker involvement or even mailing list participation.

A third methodological concern with current FLOSS research is the sampling
strategies used. For example, most research has studied well-established projects, not

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
30

projects in the initial or transition phases. Many studies base their sampling on “top
1000” lists of popular projects on a particular project hosting site, introducing sampling
biases that are rarely discussed or addressed. Samples that include projects with different
hosts are very rare, and subject to concerns when quantitative data are used, as they may
not be uniformly recorded. Most research has studied successful projects, not
unsuccessful projects. Most research has studied only a few projects, usually less than 10
and often only one. There has also been insufficient attention to segmenting research by
types of projects, e.g., based on the complexity of the project or the intended audience.
Future research needs to compare projects in different phases of evolution and of varying
types in order to advance our understanding of FLOSS development. Studies should also
attempt to advance the frontier of research designs shown in Figure 3 by simultaneously
studying larger samples of projects, in order to generalize the findings, and studying
projects in more depth, with richer data.

Fourth, as with all studies of organizational phenomena, there is a strong need for
careful attention to levels of data, analysis and theory. FLOSS data can be collected at the
level of single contributions, individual contributors, entire projects or even project
clusters, and different theories will be applicable at different levels. Multi-level studies in
particular raise several issues that need to be considered. Do the levels of aggregation
used in theory and analysis match up appropriately? When individual level measures are
used to evaluate group level phenomena, are the studies showing use of statistical tests to
assure that aggregation to the group level is appropriate? For example, using project level
data (e.g., project downloads) to make inferences about individual project members (e.g.,
effectiveness of different kinds of contributors) poses significant validity concerns.

A final concern is with the paucity of longitudinal studies in FLOSS research. There
is little doubt that the FLOSS phenomenon has changed over the last 10 years, and
continues to do so. So team interactions are probably best studied over time, as the IMOI
model suggests. For example, with increasing corporate involvement, longitudinal
research can detail the impact of such changes.

6. CONCLUSIONS
The rapid development of FLOSS as an alternative way for large software systems
development calls for a need to examine its socio-technical work practices and
development processes [Scacchi 2007]. Our goal in this article is to synthesize the
empirical research on FLOSS development to date in order to clarify what we know and
do not know. The Input-Mediators-Output-Input model in Figure 6 emphasizes the
interaction cycles between inputs, mediators and outputs of FLOSS development. Of
course, any attempt to capture a fast moving phenomenon is likely to suffer from some
limitations, but the growing importance of the topic, reflected in the volume of research,
makes it important to take stock of what has been done and to suggest promising
directions for further work. In section 5, we discussed a number of future research
directions according to the model we proposed. We hope that our discussion will inspire
additional discussions for future FLOSS research.
Empirical research on FLOSS development is still in its early stage and shows
tremendous promise for future research. In order to advance our understanding of FLOSS
phenomenon, researchers need to draw on theoretical foundations that have been utilized
in prior research on social interaction, software development, as well as other theoretical
bases that are relevant to FLOSS phenomenon, to develop a more theoretically grounded
understanding of FLOSS development. With these steps, studies on FLOSS development

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
31

has the potential to inform researchers and practitioners about how to understand,
interpret and effectively manage FLOSS development.

REFERENCES
ALHO, K. and SULONEN, R. Supporting virtual software projects on the Web. The 7th International Workshop

on Enabling Technologies: Infrastructure for Collaborative Enterprises (June 17-19, 1998).
ANTONIOL, G., VILLANO, U., MERLO, E. and PENTA, M. D. Analyzing cloning evolution in the Linux

kernel. Information and Software Technology 44, 13 (2002), 755-765.
ASKLUND, U. and BENDIX, L. Configuration Management for Open Source Software. In Proceedings of 1st

Workshop on Open Source Software Engineering (May 15, 2001).
BECKING, J., COURSE, S., ENK, G. V. and HANGYI, H. T. MMBase: An open-source content management

system. IBM Systems Journal 44, 2 (2005), 381-397.
BEZROUKOV, N. A second look at the Cathedral and the Bazaar. First Monday 4, 12 (1999).
BLANCHARD, B. S. and FABRYCKY, W. J. Systems engineering and analysis, Prentice Hall, New Jersey,

(2006).
BLEEK, W. and FINCK, M. Migrating a Development Project to Open Source Software Development.

Proceedings of the ICSE 4th Workshop on Open Source Software Engineering (May 25, 2004).
BONACCORSI, A., GIANNANGELI, S. and ROSSI, C. Entry Strategies Under Competing Standards: Hybrid

Business Models in the Open Source Software Industry. Management Science 52, 7 (2006), 1085-1098.
BONACCORSI, A. and ROSSI, C. Comparing Motivations of Individual Programmers and Firms to Take Part

in the Open Source Movement. Knowledge, Technology, and Policy 18, 4 (2006), 40-64.
CANNON-BOWERS, J. A. and SALAS, E. Shared mental models in expert decision making. Individual and

Group Decision Making. N. J. Castellan. Hillsdale, NJ, Lawrence Erlbaum Associates. (1993): 221–246.
CAPILUPPI, A. Improving comprehension and cooperation through code structure. Proceedings of the ICSE 4th

Workshop on Open Source Software Engineering (May 25, 2004).
CAPRA, E., FRANCALANCI, C. and MERLO, F. An Empirical Study on the Relationship Between Software

Design Quality, Development Effort and Governance in Open Source Projects. IEEE Transactions on
Software Engineering 34, 6 (2008), 765-782.

CHAN, A. Coding Free Software, Coding Free States: Free Software Legislation and the Politics of Code in
Peru. Anthropological Quarterly 77, 3 (2004), 531-545.

CHEN, K., SCHACH, S. R., YU, L. G., OFFUTT, J. and HELLER, G. Z. Open-source change logs. Empirical
Software Engineering 9, 3 (2004), 197-210.

CIBORRA, C. U. and ANDREU, R. Sharing knowledge across boundaries. Journal of Information Technology
16, 2 (2001), 73-81.

COLAZO, J. A., FANG, Y. and NEUFELD, D. J. Development Success in Open Source Software Projects:
Exploring the Impact of Copylefted Licenses. Americas Conference on Information Systems (AMCIS 2005)
(August 11-14, 2005).

COLLINS, J. and DRUCKER, P. A Conversation between Jims Collins and Peter Drucker. Drucker Foundation
News 7 (1999), 4-5.

CROWSTON, K. and HOWISON, J. Hierarchy and centralization in Free and Open Source Software team
communications. Knowledge, Technology and Policy 18, 4 (2005), 65-85.

CROWSTON, K., HOWISON, J. and ANNABI, H. Information systems success in Free and Open Source
Software development: Theory and measures. Software Process--Improvement and Practice 11, 2 (2006a),
123-148.

CROWSTON, K., HOWISON, J., MASANGO, C. and ESERYEL, U. Y. Face-to-face interactions in self-
organizing distributed teams. Academy of Management Conference (August 5-10, 2005).

CROWSTON, K., LI, Q., WEI, K., ESERYEL, U. Y. and HOWISON, J. Self-organization of teams in free/libre
open source software development. Information and Software Technology 49 (2007), 564-575.

CROWSTON, K. and SCOZZI, B. Coordination practices for bug fixing within FLOSS development teams.
Presentation at 1st International Workshop on Computer Supported Activity Coordination (April 13-14,
2004).

CROWSTON, K. and SCOZZI, B. Coordination practices within Free/Libre Open Source Software development
teams: The bug fixing process. Journal of Database Management 19, 2 (2008), 1-30.

CROWSTON, K., WEI, K., LI, Q., ESERYEL, U. Y. and HOWISON, J. Coordination of free/libre open source
software development. International Conference on Information Systems (December 11-14, 2005).

CROWSTON, K., WEI, K., LI, Q. and HOWISON, J. Core and periphery in Free/Libre and Open Source
software team communications. Hawai'i International Conference on System System (HICSS-39).

CURTIS, B., WALZ, D. and ELAM, J. J. Studying the process of software design teams. the 5th International
Software Process Workshop On Experience With Software Process Models, 52-53.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
32

DAFERMOS, G. N. Management and virtual decentralised networks: The Linux project. First Monday 6, 11
(2001).

DAHLANDER, L. Penguin in a new suit: a tale of how de novo entrants emerged to harness free and open
source software communities. Industrial and Corporate Change 16, 5 (2007), 913-943.

DAHLANDER, L. and MAGNUSSON, M. How do Firms Make Use of Open Source Communities? Long
Range Planning 41, 6 (2008), 629-649.

DAHLANDER, L. and MAGNUSSON, M. G. Relationships between open source software companies and
communities: Observations from Nordic firms. Research Policy 34, 4 (2005), 481-493.

DAVID, P. A. and SHAPIRO, J. S. Community-based production of open-source software: What do we know
about the developers who participate? Information Economics and Policy 20, 4 (2008), 364-398.

DEMPSEY, B. J., WEISS, D., JONES, P. and GREENBERG, J. Who is an open source software developer?
Communications of the ACM 45, 2 (2002), 67-72.

DEN BESTEN, M. L., DALLE, J.-M. and GALIA, F. The allocation of collaborative efforts in open-source
software. Information Economics and Policy 20, 4 (2008), 316-322.

DINH-TRONG, T. T. and BIEMAN, J. M. The FreeBSD project: A replication case study of open source
development. Ieee Transactions on Software Engineering 31, 6 (2005), 481-494.

DINKELACKER, J., GARG, P. K., MILLER, R. and NELSON, D. Progressive Open Source. Proceedings of
ICSE '02. Orlando, FL, ACM. (2002).

DUCHENEAUT, N. Socialization in an Open Source Software Community: a Socio-Technical Analysis.
Computer Supported Cooperative Work 14, 4 (2005), 323-368.

EDWARDS, K. Epistemic communities, situated learning and Open Source Software development. Epistemic
Cultures and the Practice of Interdisciplinarity Workshop.

ERENKRANTZ, J. R. Release Management Within Open Source Projects. Proceedings of the ICSE 3rd
Workshop on Open Source Software Engineering (May 3, 2003).

EVANS, P. and WOLF, B. Collaboration rules. Harvard Business Review 83, 7 (2005), 96-103.
FANG, Y. and NEUFELD, D. Understanding Sustained Participation in Open Source Software Projects. Journal

of Management Information Systems 25, 4 (2009), 9-50.
FERSHTMAN, C. and GANDAL, N. Open source software: Motivation and restrictive licensing. International

Economics and Economic Policy 4, 2 (2007), 209-225.
FIELDING, R. T. Shared leadership in the Apache Project. Association for Computing Machinery.

Communications of the ACM 42, 4 (1999), 42-43.
FITZGERALD, B. The transformation of Open Source Software. MIS Quarterly 30, 4 (2006), 587-598.
FITZGERALD, B. and KENNY, T. Open source software in the trenches: Lessons from a large-scale OSS

implementation. Proceedings of International Conference on Information Systems 2003 (December 14-17,
2003).

FITZGERALD, B. and KENNY, T. Developing an information systems infrastructure with open source software.
IEEE Software 21, 1 (2004), 50-55.

FREEMAN, S. The material and social dynamics of motivation: Contributions to Open Source language
technology development. Science Studies 20, 2 (2007), 55-77.

GACEK, C. and ARIEF, B. The many meanings of Open Source. IEEE Software 21, 1 (2004), 34-40.
GALLIVAN, M. J. Striking a balance between trust and control in a virtual organization: A content analysis of

open source software case studies. Information Systems Journal 11, 4 (2001), 277-304.
GARRISON, R., ANDERSON, T. and ARCHER, W. Critical thinking in a text-based environment: Computer

conferencing in higher education. The Internet and Higher Education 2 (2000), 87-105.
GERMAN, D. M. The GNOME project: A case study of open source, global software development. Software

Process: Improvement and Practice 8, 4 (2003), 201-215.
GHOSH, R. A. FM Interview with Linus Torvalds: What motivates free software developers? First Monday 3, 3

(1998).
GHOSH, R. A. Free/Libre and Open Source Software: Survey and Study. Report of the FLOSS Workshop on

Advancing the Research Agenda on Free / Open Source Software(2002).
GHOSH, R. A. Economic impact of open source software on innovation and the competitiveness of the

Information and Communication Technologies (ICT) sector in the EU. UNU-Merit (2006).
GIURI, P., RULLANI, F. and TORRISI, S. Explaining leadership in virtual teams: The case of open source

software. Information Economics and Policy 20, 4 (2008), 305-315.
GLANCE, D. G. Release criteria for the Linux kernel. First Monday 9, 4 (2004).
GODFREY, M. W. and TU, Q. Evolution in open source software: A case study. 2000 International Conference

on Software Maintenance (October 11-14, 2000).
GONZALEZ-BARAHONA, J. M., ROBLES, G., ANDRADAS-IZQUIERDO, R. and GHOSH, R. A.

Geographic origin of libre software developers. Information Economics and Policy 20, 4 (2008), 356-363.
GOODE, S. Something for nothing: management rejection of open source software in Australia's top firms.

Information & Management 42, 5 (2005), 669-681.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
33

GREWAL, R., LILIEN, G. L. and MALLAPRAGADA, G. Location, location, location: How network
embeddedness affects project success in open source systems. Management Science 52, 7 (2006), 1043-
1056.

GYIMOTHY, T., FERENC, R. and SIKET, I. Empirical Validation of Object-Oriented Metrics on Open Source
Software for Fault Prediction. IEEE Transactions on Software Engineering 31, 10 (2005), 897-910.

HACKMAN, J. R. and MORRIS, C. G. Group tasks, group interaction process, and group performance
effectiveness: A review and proposed integration. Group Processes, volume 8 of Advances in Experimental
Social Psychology. L. Berkowitz. New York, Academic Press. (1978): 45-99.

HANN, I.-H., ROBERTS, J., SLAUGHTER, S. and FIELDING, R. Economic incentives for participating in
open source software projects. Proceedings of the Twenty-Third International Conference on Information
Systems. (2002): 365-372.

HANN, I.-H., ROBERTS, J. and SLAUGHTER, S. A. Why developers participate in open source software
projects: An empirical investigation. Twenty-Fifth International Conference on Information Systems
(December 12-15, 2004).

HANSON, V. L., BREZIN, J. P., CRAYNE, S. and KEATES, S. Improving Web Accessibility through an
Enhanced Open-source Browser. IBM Systems Journal 44, 3 (2005), 573-588.

HARRISON, W. Editorial: Open Source and Empirical Software Engineering. Empirical Software Engineering
6, 3 (2001), 193-194.

HARS, A. and OU, S. S. Working for free? Motivations for participating in open-source projects. International
Journal of Electronic Commerce 6, 3 (2002), 25-39.

HECKER, F. Mozilla at one: A look back and ahead. Available at http://www.mozilla.org/mozilla-at-
one.html(1999).

HEMETSBERGER, A. and REINHARDT, C. Sharing and Creating Knowledge in Open-Source Communities:
The case of KDE. The Fifth European Conference on Organizational Knowledge, Learning, and Capabilities
(April 2-3, 2004).

HENKEL, J. Selective revealing in open innovation processes: The case of embedded Linux. Research Policy 35
(2006), 953-969.

HERTEL, G., NIEDNER, S. and HERRMANN, S. Motivation of software developers in Open Source projects:
an Internet-based survey of contributors to the Linux kernel. Research Policy 32, 7 (2003), 1159-1177.

HOLCK, J., LARSEN, M. H. and PEDERSEN, M. K. Managerial and technical barriers to the adoption of open
source software. Cots-Based Software Systems, Proceedings. (2005) 3412: 289-300.

HOWISON, J. and CROWSTON, K. The perils and pitfalls of mining SourceForge. Presentation at the
Workshop on Mining Software Repositories, 26th International Conference on Software Engineering (May
25, 2004).

HUYSMAN, M. and LIN, Y. Learn to solve problems: a virtual ethnographic case study of learning in a
GNU/Linux Users Group. eJOV - The Electronic Journal for Virtual Organizations and Networks 7 (2005),
56-69.

ILGEN, D. R., HOLLENBECK, J. R. and JOHNSON, M. Team in Organizations: From Input-Process-Output
Models to IMOI models. Annual Review of Psychology 56 (2005), 517-543.

JAMES, J. A preliminary study of the size determinant in small group interaction. American Sociological
Review 16, 4 (1951), 474-477.

JENSEN, C. and SCACCHI, W. Collaboration, Leadership, Control, and Conflict Negotiation and the
Netbeans.org Open Source Software Development Community. Proceedings of the 38th Annual Hawaii
International Conference on System Sciences (January 3-6, 2005), 196b.

KELTY, C. M. Two Bits: the Cultural Significance of Free Software, Duke University Press, Durham, NC,
(2008).

KOCH, S. Profiling an Open Source Project Ecology and Its Programmers. Electronic Markets 14, 2 (2004), 77-
88.

KOCH, S. and SCHNEIDER, G. Effort, Cooperation and Coordination in an Open Source Software Project:
GNOME. Information Systems Journal 12, 1 (2002), 27-42.

KUK, G. Strategic Interaction and Knowledge Sharing in the KDE Developer Mailing List. Management
Science 52, 7 (2006), 1031-1042.

KUWABARA, K. Linux: A bazaar at the edge of chaos. First Monday 5, 3 (2000).
LAKHANI, K. R. and VON HIPPEL, E. How open source software works: "free" user-to-user assistance.

Research Policy 32, 6 (2003), 923-943.
LAKHANI, K. R. and WOLF, R. G. Why Hackers Do What They Do: Understanding Motivation and Effort in

Free/Open Source Software Projects. Perspectives on Free and Open Source Software. J. Feller, B.
Fitzgerald, S. Hissam and K. R. Lakhani. Cambridge, MA, MIT Press. (2005).

LANCASHIRE, D. Code, Culture and Cash: The fading altruism of Open Source development. First Monday 6,
12 (2001).

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
34

LANZARA, G. F. and MORNER, M. L. Making and sharing knowledge at electronic crossroads: the
evolutionary ecology of open source. 5th European Conference on Organizational Knowledge, Learning and
Capabilities (April 2-3, 2004).

LEE, G. K. and COLE, R. E. From a firm-based to a community-based model of knowledge creation: The case
of the Linux kernel development. Organization Science 14, 6 (2003), 633-649.

LEE, S.-Y. T., KIM, H.-W. and GUPTA, S. Measuring open source software success. Omega 37, 2 (2009), 426-
438.

LEIBOVITCH, E. The business case for Linux. IEEE Software 16, 1 (1999), 40-44.
LERNER, J. and TIROLE, J. Some simple economics of open source. Journal of Industrial Economics 50, 2

(2002), 197-234.
LERNER, J. and TIROLE, J. The economics of technology sharing: open source and beyond. Journal of

Economic Perspectives 19, 2 (2005a), 99-120.
LERNER, J. and TIROLE, J. The Scope of Open Source Licensing. Journal of Law Economics & Organization

21, 1 (2005b), 20-56.
LIN, Y. Hybrid Innovation: How Does the Collaboration Between the FLOSS Community and Corporations

Happen? Knowledge, Technology and Policy 18, 4 (2006), 86-100.
LONG, J. and YUAN, M. J. Are all Open Source Projects Created Equal? Understanding the Sustainability of

Open Source Software Development Model. Americas Conference on Information Systems (August 11-15,
2005).

LONG, Y. and SIAU, K. Social Network Structures in Open Source Software Development Teams. Journal of
Database Management 18, 2 (2007), 25-40.

LUTHIGER STOLL, B. Fun and Software Development. Proceedings of the First International Conference on
Open Source Systems (July 11-15, 2005), 273-278.

MACCORMACK, A., RUSNAK, J. and BALDWIN, C. Y. Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code. Management Science 52, 7 (2006),
1015-1030.

MALONE, T. W., CROWSTON, K., LEE, J., PENTLAND, B., DELLAROCAS, C., WYNER, G., QUIMBY, J.,
OSBORN, C. S., BERNSTEIN, A., HERMAN, G., KLEIN, M. and O'DONNELL, E. Tools for inventing
organizations: Toward a handbook or organizational processes. Management Science 45, 3 (1999), 425-443.

MARKS, M. A., MATHIEU, J. E. and ZACCARO, S. J. A Temporally Based Framework and Taxonomy of
Team Processes. Academy of Management Review 26, 3 (2001), 356-376.

MARTINS, L. L., GILSON, L. L. and MAYNARD, M. T. Virtual Teams: What do We Know and Where do We
Go from Here? Journal of Management 30, 6 (2004), 805-835.

MATEOS-GARCIA, J. and STEINMUELLER, W. E. The institutions of open source software: Examining the
Debian community. Information Economics and Policy 20, 4 (2008), 333-344.

MCGRATH, J. Groups: Interaction and Performance, Prentice-Hall, Englewood Cliffs, NJ, (1984).
MCGRATH, J. E. Time, interaction, and performance (TIP): A theory of groups. Small Group Research 22

(1991), 147-174.
MCGRATH, J. E. Small group research, that once and future field: An interpretation of the past with an eye to

the future. Group Dynamics: Theory, Research and Practice 1, 1 (1997), 7-27.
MENDEZ-DURON, R. and GARCÍA, C. E. Returns from Social Capital in Open Source Software Networks.

Journal of Evolutionary Economics 19 (2009), 277-295
MICHLMAYR, M. Quality and the Reliance on Individuals in Free Software Projects. Proceedings of the ICSE

3rd Workshop on Open Source Software Engineering (May 3, 2003).
MICHLMAYR, M. Managing Volunteer Activity in Free Software Projects. Proceedings of the 2004 USENIX

Annual Technical Conference, FREENIX Track (2004), 93-102.
MIRALLES, F., SIEBER, S. and VALOR, J. CIO Herds and User Gangs in the Adoption of Open Source

Software. European Conference on Information Systems (ECIS 2005) (May 26-28, 2005).
MOCKUS, A., FIELDING, R. T. and HERBSLEB, J. D. A case study of Open Source Software development:

The Apache server. Proceedings of the International Conference on Software Engineering (ICSE'2000).
MOCKUS, A., FIELDING, R. T. and HERBSLEB, J. D. Two case studies of open source software development:

Apache and Mozilla. Acm Transactions on Software Engineering and Methodology 11, 3 (2002), 309-346.
MOON, J. Y. and SPROULL, L. Essence of distributed work: The case of the Linux kernel. First Monday 5, 11

(2000).
MORAND, D. A. and OCKER, R. J. Politeness theory and Computer-Mediated communication: A

Sociolinguistic Approach to Analyzing Relational Messages. In Proceedings of the 36th Hawaii
International Conference on System Sciences (HICSS' 03). (January 6-9, 2003).

NAKAKOJI, K., YAMAMOTO, Y., NISHINAKA, Y., KISHIDA, K. and YE, Y. Evolution patterns of open-
source software systems and communities. Proceedings of International Workshop on Principles of
Software Evolution (IWPSE) (May 19-20, 2002), 76-85.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
35

NICHOLS, D. M., THOMSON, K. and YEATES, S. A. Usability and open-source software development.
Proceedings of the Symposium on Computer Human Interaction (July 6, 2001), 49-54.

O'LEARY, M. B. and CUMMINGS, J. N. The Spatial, Temporal, and Configurational Characteritics of
Geographic Dispersion in Teams. MIS Quarterly 31, 3 (2007), 433-452.

O'MAHONY, S. Guarding the commons: How community managed software projects protect their work.
Research Policy 32, 7 (2003), 1179-1198.

OH, W. and JEON, S. Membership Dynamics and Network Stability in the Open-Source Community: The Ising
Perspective. Proceedings of International Conference on Information Systems 2004 (December 12-15,
2004).

ORGAN, D., PODSAKOFF, P. and MACKENZIE, S. Organizational citizenship behavior: Its nature,
antecedents, and consequences, SAGE Publications, Thousand Oaks, CA, (2006).

ORMAN, W. H. Giving It Away for Free? The Nature of Job-Market Signaling by Open-Source Software
Developers. The B.E. Journal of Economic Analysis & Policy 8, 1 (2008), Article 12.

PAULSON, J. W., SUCCI, G. and EBERLEIN, A. An empirical study of open-source and closed-source
software products. IEEE Transactions on Software Engineering 30, 4 (2004), 246-256.

POWELL, A., PICCOLI, G. and IVES, B. Virtual Teams: a review of current literature and directions for future
research. The DATA BASE for Advances in Information Systems 35, 1 (2004), 6-36.

RAYMOND, E. S. The Cathedral and the Bazaar. First Monday 3, 3 (1998).
RIDLEY, M. The Origins of Virtue: Human Instincts and the Evolution of Cooperation., Viking, New York,

(1996).
ROBBINS, J. E. Adopting OSS Methods by Adopting OSS Tools. Proceedings of the ICSE 2nd Workshop on

Open Source Software Engineering (May 25, 2002).
ROBERTS, J., HANN, I.-H. and SLAUGHTER, S. A. Understanding the Motivations, Participation, and

Performance of Open Source Software Developers: A Longitudinal Study of the Apache Projects.
Management Science 52, 7 (2006), 984-999.

ROBLES, G. and GONZALEZ-BARAHONA, J. M. A. M. M. Evolution of volunteer participation in libre
software projects: Evidence from Debian. Proceedings of the First International Conference on Open Source
Systems (July 11 - 15, 2005), 100-107.

ROSSI, M. A. Decoding the "Free/Open Source (F/OSS) Software Puzzle": A survey of theoretical and
empirical contributions. The Economics of Open Source Software Development. J. Bitzer and P. J. H.
Schroder. Amsterdam, Elsevier Press. (2006): 15-56.

SADOWSKI, B. M., SADOWSKI-RASTERS, G. and DUYSTERS, G. Transition of governance in a mature
open software source community: Evidence from the Debian case. Information Economics and Policy 20, 4
(2008), 323-332.

SAGERS, G. W. The influence of network governance factors on success in open source software development
projects. Proceedings of International Conference on Information Systems 2004 (December 12-15, 2004).

SAMOLADAS, I., STAMELOS, I., ANGELIS, L. and OIKONOMOU, A. Open source software development
should strive for even greater code maintainability. Communications of the ACM 47, 10 (2004), 83-87.

SCACCHI, W. Understanding the requirements for developing Open Source Software systems. IEE Proceedings
Software 149, 1 (2002), 24–39.

SCACCHI, W. Free/Open Source Software Development Practices in the Computer Game Community. IEEE
Software 21, 1 (2004), 56-66.

SCACCHI, W. Free/Open Source Software Development: Recent Research Results and Methods. Advances in
Computers 69 (2007), 243-295.

SCHACH, S. R., JIN, B. and WRIGHT, D. R. Maintainability of the Linux Kernel. Proceedings of 2nd
Workshop on Open Source Software Engineering (May 25, 2002).

SCHACH, S. R., JIN, B., WRIGHT, D. R., HELLER, G. Z. and OFFUTT, A. J. Determining the Distribution of
Maintenance Categories: Survey versus Measurement. Empirical Software Engineering 8, 4 (2003), 351-365.

SCHMIDT, D. C. and PORTER, A. Leveraging Open-Source Communities To Improve the Quality &
Performance of Open-Source Software. Proceedings of the ICSE 1st Workshop on Open Source Software
Engineering (May 15, 2001).

SCOZZI, B., CROWSTON, K., ESERYEL, U. Y. and LI, Q. Shared Mental Models among Open Source
Software Developers. 41st Hawai'i International Conference on System Science (January 7-10, 2008).

SHAH, S. K. Motivation, governance, and the viability of hybrid forms in open source software development.
Management Science 52, 7 (2006), 1000-1014.

SHAIKH, M. and CORNFORD, T. Version Management Tools: CVS to BK in the Linux Kernel. Proceedings
of the ICSE 3rd Workshop on Open Source Software Engineering (May 3, 2003).

SINGH, V., TWIDALE, M. B. and RATHI, D. Open Source Technical Support: A Look at Peer Help-Giving.
Proceedings of the 39th Annual Hawaii International Conference on System Sciences (January 4-7, 2006).

STAMELOS, I., ANGELIS, L., OIKONOMOU, A. and BLERIS, G. L. Code quality analysis in open source
software development. Information Systems Journal 12, 1 (2002), 43-60.

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
36

STARK, J. Peer reviews as a quality management technique in open-source software development projects.
Lecture Notes in Computer Science. (2002) 2349: 340-350.

STEWART, K. J., AMMETER, A. P. and MARUPING, L. M. A Preliminary Analysis of the Influences of
Licensing and Organizational Sponsorship on Success in Open Source Projects. Proceedings of the 38th
Annual Hawaii International Conference on System Sciences (January 3-6, 2005), 197c.

STEWART, K. J., AMMETER, A. P. and MARUPING, L. M. Impacts of License Choice and Organizational
Sponsorship on User Interest and Development Activities in Open Source Software Projects. Information
Systems Research 17, 2 (2006), 126-144.

STEWART, K. J. and AMMETER, T. An exploratory study of factors influencing the level of vitality and
popularity of open source projects. Proceedings of the Twenty-Third International Conference on
Information Systems (December 14-17, 2003).

STEWART, K. J. and GOSAIN, S. Impacts of ideology, trust, and communication on effectiveness in open
source software development teams. Twenty-Second International Conference on Information Systems
(December 16-19, 2001).

STEWART, K. J. and GOSAIN, S. The Impact of Ideology on Effectiveness in Open Source Software
Development Teams. MIS Quarterly 30, 2 (2006), 291-314.

SUBRAMANIAM, C., SEN, R. and NELSON, M. L. Determinants of open source software project success: A
longitudinal study. Decision Support Systems 46, 2 (2009), 576-585.

SUBRAMANYAM, R. and XIA, M. Free/Libre Open Source Software development in developing and
developed countries: A conceptual framework with an exploratory study. Decision Support Systems 46, 1
(2008), 173-186.

THOMAS, C. Improving Verification, Validation, and Test of the Linux Kernel: the Linux Stabilization Project.
Proceedings of the ICSE 3rd Workshop on Open Source Software Engineering (May 3, 2003).

TUOMI, I. Evolution of the Linux credits file: Methodological challenges and reference data for Open Source
resea. First Monday 9, 6 (2004).

VAN WENDEL DE JOODE, R. Managing Conflicts in Open Source Communities. Electronic Markets 14, 2
(2004), 104-113.

VAN WENDEL DE JOODE, R. and DE BRUIJNE, M. The Organization of Open Source Communities:
Towards a Framework to Analyze the Relationship between Openness and Reliability. Proceedings of the
39th Annual Hawaii International Conference on System Sciences (January 4-7, 2006).

VAN WENDEL DE JOODE, R. and EGYEDI, T. M. Handling variety: the tension between adaptability and
interoperability of open source software. Computer Standards & Interfaces 28, 1 (2005), 109-121.

VASS, B. Migrating to Open Source: Have No Fear. 3rd DoD Open Conference: Deployment of Open
Technologies and Architectures within Military Systems (December 11-12, 2007).

VEMURI, V. K. and BERTONE, V. Will the Open Source Movement Survive a Litigious Society? Electronic
Markets 14, 2 (2004), 114-123.

VERMA, S., JIN, L. and NEGI, A. Open Source Adoption and Use: A Comparative Study Between Groups in
the US and India. Americas Conference on Information Systems (AMCIS 2005) (August 11-15, 2005).

VESSEY, I., RAMESH, V. and GLASS, R. L. Research in Information Systems: An Empirical Study of
Diversity in the Discipline and Its Journals. Journal of Managment Information Systems 19, 2 (2002), 129-
174.

VON HIPPEL, E. Innovation by user communities: Learning from open-source software. Mit Sloan
Management Review 42, 4 (2001), 82-86.

VON HIPPEL, E. and VON KROGH, G. Open Source Software and the "Private-Collective" Innovation Model:
Issues for Organization Science. Organization Science 14, 2 (2003), 209–213.

VON KROGH, G., SPAETH, S. and HAEFLIGER, S. Knowledge Reuse in Open Source Software: An
Exploratory Study of 15 Open Source Projects. Proceedings of the 38th Annual Hawaii International
Conference on System Sciences. (January 3-6, 2005), 198b.

VON KROGH, G., SPAETH, S. and LAKHANI, K. R. Community, joining, and specialization in open source
software innovation: a case study. Research Policy 32, 7 (2003), 1217-1241.

VON KROGH, G. and VON HIPPEL, E. The Promise of Research on Open Source Software. Management
Science 52, 7 (2006), 975-983.

WALLI, S., GYNN, D. and ROTZ, B. V. The Growth of Open Source Software in Organizations. A report
(2005), available at http://www.optaros.com/news/white-papers-reports#growth-open-source-software-
organizations (retrieved on May 8, 2008).

WARING, T. and MADDOCKS, P. Open Source Software implementation in the UK public sector: Evidence
from the field and implications for the future. International Journal of Information Management 25, 5 (2005),
411-428.

WATSON-MANHEIM, M. B., CHUDOBA, K. M. and CROWSTON, K. Discontinuities and Continuities: a
new way to understand virtual work. Information, Technology & People 15, 3 (2002), 191-209.

WAYNER, P. Free For All, HarperCollins, New York, (2000).

 K. Crowston et al.

ACM Computing Surveys, Vol. X, No. X, Article X, Pub. date: XXXX.
37

WEST, J. and O'MAHONY, S. Contrasting Community Building in Sponsored and Community Founded Open
Source Projects. Proceedings of the 38th Annual Hawaii International Conference on System Sciences
(January 3-6, 2005), 196c.

WU, C.-G., GERLACH, J. H. and YOUNG, C. E. An empirical analysis of open source software developers'
motivations and continuance intentions. Information & Management 44, 3 (2007), 253-262.

WYNN, D. Organizational Structure of Open Source Projects: A Life Cycle Approach. Proceedings of the 7th
Annual Conference of the Southern Association for Information Systems (SAIS) (February 27-28, 2004),
285-290.

XU, B., JONES, D. R. and SHAO, B. Volunteers' involvement in online community based software
development. Information & Management 46, 3 (2009), 151-158.

YAMAUCHI, Y., YOKOZAWA, M., SHINOHARA, T. and ISHIDA, T. Collaboration with lean media: How
open-source software succeeds. Proceedings of the Conference on Computer-Supported Cooperative Work
(CSCW'00) (December 2-6, 2000).

YAN, N., LEIP, D. and GUPTA, K. The use of open-source software in the IBM corporate portal. IBM Systems
Journal 44, 2 (2005), 419-425.

YE, Y. and KISHIDA, K. Toward an Understanding of the Motivation of Open Source Software Developers.
Proceedings of 2003 International Conference on Software Engineering (ICSE) (May 3-10, 2003).

